An analytic solution for the transition from a highly viscous fluid to a rigid solid and its relation to thermodynamic principles

B. Emek Abali, M.Sc.,
Prof. Dr. rer. nat. Wolfgang H. Müller

International Symposium on Problems of Mechanics of Deformable Bodies,
21.01.2011, Lomonossow State University, Moskow, Russia
Outline

- Introduction
- Setting a model problem to calculate the entropy production
- Outlook
Outline

- Introduction
- Setting a model problem to calculate the entropy production
- Outlook
Introduction - I

• Goal: Predicting a process in a thermodynamic proper way, hence find five primary field quantities in space-time for a continua

mass density \(\rho(x,t) \)
velocities \(v_i(x,t) \)
temperature \(T(x,t) \)

• \(\rightarrow \) initial boundary value problem based on conservation laws

balance of mass \(\frac{d\rho}{dt} + \rho \frac{\partial v_i}{\partial x_i} = 0 \) \(\frac{d\rho}{dt} + \rho v_i \frac{\partial v_i}{\partial x_i} = \rho f_i \)
balance of linear momentum \(\rho \frac{d v_i}{dt} + \frac{\partial \sigma_{ji}}{\partial x_j} = \rho f_i \) \(\sigma_{ij}, q_i, u, \rho, v_i \)
balance of internal energy \(\rho \frac{du}{dt} + \rho \frac{\partial q_i}{\partial x_i} = \sigma_{ij} \frac{\partial v_i}{\partial x_j} + \rho r \)

\(\sigma_{ij}, q_i, u, \rho, v_i \)

How to find relations for these?
Introduction - II

- Goal:
 Find out the constitutive relations for irreversible processes of fluids and solids

- Use constraints alike
 - principle of isotropy, homogeneity
 - principle of objectivity
 - principle of entropy production
Introduction - III

Goal:

Set a model problem

Find the primary fields

Measure the irreversibility over entropy production
Outline

• Introduction

• Setting a model problem to calculate the entropy production

• Outlook
Application - I

- Representation of second order tensor [Spencer 1971]

\[\sigma_{ij} = \pi(\cdots)\delta_{ij} + 2\mu(\cdots)d_{ij} + h(\cdots)d_{ik}d_{kj} \quad \pi = \pi(d_{ll},d_{lm}d_{ml},d_{lm}d_{mn}d_{nl}) \]

\[\mu = \mu(d_{ll},d_{lm}d_{ml},d_{lm}d_{mn}d_{nl}) \]

\[h = h(d_{ll},d_{lm}d_{ml},d_{lm}d_{mn}d_{nl}) \]

- Channel flow, ansatz: \(\nu = (\nu_1(x_2), 0, 0) \) hence no vorticity \(\sigma_{ij} = \sigma_{ji} \)

\[d_{ij} = \frac{1}{2}\left(\frac{\partial \nu_i}{\partial x_j} + \frac{\partial \nu_j}{\partial x_i}\right) \quad d_{ij} = \begin{pmatrix} 0 & \frac{1}{2} \frac{d \nu_1}{dx_2} & 0 \\ \frac{1}{2} \frac{d \nu_1}{dx_2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

\[d_{ll} = 0 \quad , \quad d_{lm}d_{ml} = \frac{1}{2}\left(\frac{d \nu_1}{dx_2}\right)^2 \quad , \quad d_{lm}d_{mn}d_{nl} = 0 \]
• prefer to have constants on the diagonal

\[\pi(\cdots) = -p \]

eliminate tensoriell-non-linear terms \[h(\cdots) = 0 \]

• Viscous fluid and plastic deformable solid body (inspired from [Ziegler 1983])

\[\sigma_{ij} = -p \delta_{ij} + 2 \left(\mu_0 + \frac{2k}{\pi \sqrt{d_{ij}d_{ij}}} \arctan \left(\frac{\sqrt{d_{ij}d_{ij}}}{2b} \right) \right) d_{ij} \]
Application - III

- Channel flow, ansatz: \(\mathbf{v} = (v_1(x_2), 0, 0) \)

\[
\sigma_{ij} = \begin{pmatrix}
-p & 2\mu_0d_{12} + \frac{2k}{\pi}\arctan\left(\frac{|d_{12}|}{b}\right)\text{sign}(d_{12}) & 0 \\
\vdots & -p & 0 \\
\vdots & \vdots & \vdots \\
\vdots & -p & \vdots
\end{pmatrix}
\]

\(b \rightarrow 0 \)
Application - IV

• Setting the channel flow problem

• conservation laws

\[\frac{d\rho}{dt} + \rho \frac{\partial u_i}{\partial x_i} = 0 \]

\[\rho \frac{d\nu_i}{dt} + \frac{\partial \sigma_{ji}}{\partial x_j} = \rho f_i \]

\[\rho \frac{du}{dt} + \rho \frac{\partial q_i}{\partial x_i} = \sigma_{ji} \frac{\partial \nu_i}{\partial x_j} + \rho r \]

• state laws

\[\sigma_{12} = 2\alpha d_{12} + \frac{2}{\pi} \kappa \arctan \left(\frac{d_{12}}{b} \right) \]

\[\nu = (\nu_1(x_2), 0, 0) \]

\[u = u(x_2) \]

\[T = T(x_2) \]

• semi-inverse ansatz

• assume

• steady state

\[\frac{\partial}{\partial t} = 0 \]

• no body forces

\[f_i = 0 \]

• no radiation supply

\[r = 0 \]
Application - V

- boundary value non-linear differential equation

\[p = p(x_1) \]

\[- \frac{d p}{d x_1} + \frac{d^2 \nu_1}{d x_2^2} \left(\mu_0 + \frac{4kb}{\pi (4b^2 + \left(\frac{d \nu_1}{d x_2} \right)^2)} \right) = 0 , \quad + \kappa \frac{d^2 T}{d x_2^2} + \mu_0 \left(\frac{d \nu_1}{d x_2} \right)^2 + \frac{2 \kappa}{\pi} \frac{d \nu_1}{d x_2} \arctan \left(\frac{d \nu_1}{d x_2} \right) = 0 \]

- numerical approximation is possible, by shooting method, finite differences

max. change on boundaries!

Copyright © Prof. Dr. rer. nat. W.H. Müller, e-mail: Wolfgang.H.Mueller@tu-berlin.de, 2011
Application - VI

- analytic solution for $b = 0$

\[
\bar{\sigma} = \frac{d \bar{v}_1}{d x_2} + k \text{ sign}\left(\frac{d \bar{v}_1}{d x_2}\right)
\]

\[
\bar{v}_1 = \frac{v_1}{v_0}, \quad v_0 = \left|\frac{d p}{d x_1}\right| \frac{R^2}{\mu_0}, \quad \bar{x} = \frac{x_2}{R},
\]

\[
\bar{v}_1 = \frac{1}{2} \left(1 - \bar{x}^2\right) - \xi (1 \pm \eta)(1 \mp \bar{x}) + \nu_{\text{Top/Bottom}}
\]

2nd order in x
Application - VII

• analytic solution for $b = 0$

$$+ \kappa \frac{d^2 T}{d x_2^2} + \sigma_{21} \frac{d \nu_1}{d x_2} = 0$$

$$\bar{T} = \frac{T}{T_{\text{boundary}}}, \quad \bar{\kappa} = \frac{\kappa T_{\text{boundary}}}{k \nu_0 R}, \quad \bar{p} = \left| \frac{d}{d x_1} \right| \frac{R}{k} , \quad T(\bar{x} = \pm 1) = T_{\text{boundary}}$$

4th order in x

$$\bar{T} = 1 + \frac{p}{12 \kappa} \left(-\bar{x}^4 + 1 + (\bar{x} + 1)4\xi^3 (\eta \pm 1)^3 \right) +$$

$$+ \frac{p}{6 \kappa} \left(2\xi(\eta \pm 1) + \bar{k} \right) \left(\bar{x}^3 + 1 - (\bar{x} + 1)3\xi^2 (\eta \pm 1)^2 \right) +$$

$$+ \frac{p}{2 \kappa} \left(\xi^2 (1 \pm \eta)^2 - \bar{k} \xi(1 \pm \eta) \right) \left(-\bar{x}^2 + 1 + (\bar{x} + 1)2\xi(\eta \pm 1) \right)$$
Application - VIII

Assumption: Production of entropy is the measure of irreversibility

\[\Sigma = \frac{\Sigma RT_{\text{boundary}}}{k \nu_0}, \]

\[\Sigma T = \frac{\kappa}{T} \left(\frac{dT}{d\bar{x}} \right)^2 + \frac{1}{k} \left(\frac{d\bar{u}_1}{d\bar{x}} \right)^2 + \left(\frac{d\bar{u}_1}{d\bar{x}} \right) \]

Due to the balance of internal energy 2nd order in x
Due to the balance of linear momentum 2nd order in x
• Assumption: Production of entropy is the measure of irreversibility
Outline

- Introduction
- Setting a model problem to calculate the entropy production
- Outlook
Outlook

- Set a model problem with a more general ansatz
- Keep away from unstable regions (variable viscosity)
- Define a non-linear solution strategy
- Set a model problem with the complete stress representation
Thanks a lot for Your attention!

Questions?