Errata of the book

Available at Springer via https://doi.org/10.1007/978-981-10-2444-3

B. Emek Abali

August 3, 2019

Changes in newer versions

The newer version of FEniCS started to use a slightly different declarations. For the 2018 version, we need to import as follows:

```python
from dolfin import *
from ufl import indices
```

Also `print` has been changed such that we need to write

```python
a, b = 5, 12.3
print('a = %g and b = %g ' % (a, b))
```

Some changes are also for the `cells` and `facets` list as well as the infinitesimal volume and surface elements such that the number of Gauss points are directly set within the construction as follows:

```python
cells = MeshFunction('size_t', mesh, 3, 0) # third argument is 3 for 3D elements
facets = MeshFunction('size_t', mesh, 2, 0) # fourth argument sets all the values 0
dA = Measure('ds', domain=mesh, subdomain_data=facets, metadata={'quadrature_degree': 2})
dV = Measure('dx', domain=mesh, subdomain_data=cells, metadata={'quadrature_degree': 2})
```

The tensor representation by using `uflacs` is suggested for many problems as well:

```python
solve(Form==0, u, bc, J=Gain, solver_parameters={"newton_solver":{},
  "linear_solver": "mumps", "relative_tolerance": 1e-3 },
  form_compiler_parameters={"cpp_optimize": True, "representation": "uflacs"})
```

Also constructing mixed function spaces has been changed. The mixed function space for 2D problems, for example the following code snippet

```python
mesh = RectangleMesh(Point(0.0, 0.0), Point(100, 10), 50,5)
Scalar = FunctionSpace(mesh, 'P', 1)
Vector = VectorFunctionSpace(mesh, 'P', 1)
Space=MixedFunctionSpace([Scalar, Vector])
```

needs to be changed as follows
In the case of a 3D example, it is analogous

Moreover, every Expression needs to know the degree for form functions

Typos

Below is a hopefully complete list of typos and mistakes in the text:

The block comment is missing on the lines 1 and 2 of the code on pages 12, 24, and 33. It should be like

On page 19, after Eq. (1.55) “The Euler–Almansi strain...”

On page 21, it should be “...by using \(\rho = \rho_0 / J \), we will satisfy...”

On page 83, the unit in Eq. (1.259) had to be m^2/s.

On page 99, after 1.9 Fluid Structure Interaction “...we need to use the so-called arbitrary Euler–Lagrange frame...”

On page 102, Eq. (1.304) should be

\[
\frac{d\mathbf{v}}{dt} = \left(\frac{dx_1}{dx_1} \frac{dx_2}{dx_2} \frac{dx_3}{dx_3} \right) \mathbf{v} = \frac{\partial w_k}{\partial x_k} \mathbf{v}.
\]

On page 103, Eq. (1.308) should be

\[
\int_\Omega \left(\frac{\partial w_k}{\partial x_k} \delta p + \frac{\partial v_i}{\partial x_i} \delta p + w_i \frac{\partial \delta p}{\partial x_i} \right) dv - \int_{\Gamma_N} w_i \delta p n_i dv.
\]

On page 148, in Eq. (2.147) fourth term should be corrected as

\[
\ldots \rho_0 (\eta - \eta_0) \delta T \ldots
\]

also on 98th line of the corresponding code on page 152.

On page 168, end of Eq. (3.2) should be corrected as

\[
(\mathbf{v}) = \cdots = \frac{\partial v_i^e}{\partial x_i} dv.
\]

On page 202, \(a = \pi r^2_c \).

On page 216, Eq. (3.120) should be

\[
\frac{\partial \rho u}{\partial t} - \frac{\partial}{\partial x_j} (- v_j \rho u - q_j) - \rho r = \Gamma,
\]
On page 254, Eq. (3.242) should be

\[\cdots \Rightarrow \tilde{s}_{ijk} = -\tilde{S}_{kji} \cdots \]

leading to

\[d\tilde{\sigma}_{ij} = \cdots - \tilde{S}_{kji} dB_k \]

in Eq. (3.246) as well as

\[\tilde{\sigma}_{ij} = \cdots - \tilde{S}_{kji} B_k \]

in Eq. (3.248).