Klausur zur Kontinuumsmechanik WS 2014/15

Namens in lesbaren Druckbuchstaben angeben!

Name, Vorname:
Matr.-Nr.: 1
Studiengang:
Ich bestätige meine Prüfungsfähigkeit (Unterschrift):
○ Studienbegleitende Prüfung (Bachelor)
○ Übungsscheinprüfung (ohne Theorieteil)

Σ

Theorieteil

Hinweis: Eine Theorieaufgabe muss komplett richtig beantwortet werden, um den zugehörigen Punkt zu erhalten! Antworten zu Theorieaufgaben auf einem Extrablatt werden ohne gesonderten Hinweis auf das Extrablatt bei den Aufgabenstellungen nicht gewertet!

1. Geben Sie von den folgenden Größen die Einheiten ausgedrückt in den SI-Basiseinheiten: m, kg, s, A, K, mol und cd an. (1 Punkt)

Lamé-Konstante λ des Hookeschen Gesetzes \[
\frac{kg}{m^4} \left(\frac{N}{m^2} \right) \]
Lamé-Konstante λ des Navier-Stokes-Gesetzes \[
\frac{kg}{m^4} \left(\frac{N}{m^2} \right) \]

spezifische Volumenkraft f \[
\frac{m}{s^2} \left(\frac{N}{kg} \right) \]
Impulsdichte ρv \[
\frac{kg}{m^3} \left(\frac{kg}{m^2} \right) \]

2. Es sollen Transversalwellen einer beidseitig eingespannten Saite mit $x \in [0, \ell]$ untersucht werden. Zur Zeit $t = 0$ ist die Saite in Ruhe und erfährt eine Anfangsauslenkung $w_0(x)$, die im Bereich $x \in [0, \ell]$ gezeichnet ist. Die Verschiebung $w(x, t)$ soll mit der Methode von D’ALEMBERT ausgerechnet werden, wofür die Anfangsdaten fortgesetzt werden müssen. Zeichnen Sie die qualitativ richtige Fortsetzung im Bereich $x \in [-\ell, 2\ell]$ in das Diagramm ein. (1 Punkt)

3. Kreuzen Sie das korrekte FOURIER-Gesetz für isotrope Werkstoffe an. (1 Punkt)

\Box $q = -\kappa \nabla T$
\Box $q = -\kappa \nabla \times T$
\Box $q = -\kappa \nabla \cdot T$
\Box $q = -\alpha (T - T_{ref}) n$

\[\sigma = -\nabla \cdot \nabla p \mathbb{I} + \mu (\nabla \mathbf{v} + (\nabla \mathbf{v})^T) \]

\[\sigma = -\nabla p + \lambda \nabla \cdot \mathbf{v} \mathbb{I} + \mu (\nabla \mathbf{v} + (\nabla \mathbf{v})^T) \]

\[\sigma = -\nabla p + \lambda \nabla \cdot \mathbf{v} \mathbb{I} + 2\mu \nabla \mathbf{v} \]

- Erhöhung des Flächenträgheitsmomentes \(I \)
- Erhöhung der Normalkraft \(N \)
- Erhöhung der Massendichte \(\rho \)
- Erhöhung der Querschnittsfläche \(A \)
- Erhöhung des Elastizitätsmoduls \(E \)
- Erhöhung der Querkontraktionszahl \(\nu \)

6. Geben Sie die rechte Seite der Massenbilanz eines geschlossenen Systems an:

\[\frac{dM}{dt} = 0 \]

7. Übertragen Sie die Gleichung des Spannungsdeviators, \(\Sigma = \sigma - \frac{1}{3} \text{Sp}(\sigma) \mathbb{I} \), in Indexnotation mit kartesischen Komponenten. Gebundene Indizes in dem Ausdruck sind zu expandieren!

\[\Sigma_{ij} = \varepsilon_{ij} - \frac{1}{3} \left(\varepsilon_{kk} + \varepsilon_{22} + \varepsilon_{33} \right) \delta_{ij} \]

8. Unter der Annahme eines sehr großen Behälters soll die gegenwärtige Wasser-Ausflussgeschwindigkeit im Punkt 1 bestimmt werden.

Am Ausfluss 1 ist die Geschwindigkeit:

\[|v| = \sqrt{2gH} \]

Geg.: \(p_0, g, H, A_0, A_1, \rho_w \)

9. In einem geschlossenen starren Behälter soll der Druck \(p_{\text{Innen}}(x) \) an der Innenwand unterhalb der Wasseroberfläche bestimmt werden.

Geben Sie den Innendruck \(p_{\text{Innen}}(x) \) in Abhängigkeit der eingezeichneten Koordinate \(x \) unterhalb der Wasseroberfläche an:

\[p_{\text{Innen}}(x) = \frac{\rho g H (1-x)}{\rho} \]

Geg.: \(p_0, p_1, g, A, H, \rho_w \)
10. In einem Balken sollen Transversalwellen untersucht werden. Geben Sie die Randbedingungen für das Lager B an der Stelle \(x = \ell \) an, ausgedrückt durch die Verschiebung \(w \).

\[\begin{align*}
 \text{Randbedingungen in } w \text{ für die Berechnung der Transversalwellen:} \\
 \text{(RB1): } & w''(x=\ell) = 0 \\
 \text{(RB2): } & w'''(x=\ell) = 0
\end{align*} \]

Geg.: \(\rho, E, I, A, c, \ell \)

Rechenteil

1. Stromfadentheorie

Aus einem großen Behälter fließt eine inkompressible Flüssigkeit durch ein Rohr mit veränderlicher Querschnittsfläche aus.

a) Wie groß sind die Ausflussgeschwindigkeit \(|v| \) und der Volumenstrom \(Q \) am Ausfluss \(3 \)? (2 Punkte)

b) Geben Sie die Volumenströme \(Q \) und die Geschwindigkeiten \(|v| \) an den Stellen \(1 \) und \(2 \) an. (4 Punkte)

c) Wie groß ist der Druck \(p \) an den Stellen \(1 \) und \(2 \)? (2 Punkte)

d) Wie hoch sind die Wasserspiegel in den Steigrohren? Geben Sie die Maße \(z_1 \) und \(z_2 \) an. *Hinweis: Verwenden Sie hier die hydrostatische Druckformel.* (2 Punkte)

Geg.: \(p_0, g, H, A_1, A_2, \rho W \)
Rechenteil

Aufgabe 1

a) **BERNOULLI** 0 - 3

\[
\frac{p_0}{s_w} + g H = \frac{V_0^2}{2} + \frac{p_0}{s_w}
\]

\[\Rightarrow V_3 = \sqrt{2gH}\]

\[\Rightarrow Q_0 = V_3 A_2 = \sqrt{2gH} A_2\]

b) **Kontinuitätsgleichung bei Inkompressibilität**

\[Q_0 = Q_3 = \sqrt{2gH} A_2\]

\[Q_0 = Q_0 = V_3 A_2\]

\[\Rightarrow V_0 = \sqrt{2gH} \frac{A_2}{A_1}\]

\[V_0 = \sqrt{2gH} = V_3\]

c) **BERNOULLI** 1 - 0

\[p_0 = p_0 = p_0\]

\[\text{BERNOULLI} 1 - 2\]

\[\frac{V_0^2}{2} + \frac{p_0}{s_w} = \frac{V_0^2}{2} + \frac{p_0}{s_w}\]

\[\Rightarrow p_0 = p_0 + s_w g H \left[1 - \left(\frac{A_2}{A_1}\right)^2\right]\]

d) **Hydrostatische Druckformel**

\[\text{Für } z_1:\]

\[p_0 = p_0 + s_w g z_1\]

\[\Rightarrow s_w g z_1 = s_w g H \left[1 - \left(\frac{A_2}{A_1}\right)^2\right]\]

\[\Rightarrow z_1 = H \left[1 - \left(\frac{A_2}{A_1}\right)^2\right]\]

\[\text{Für } z_2:\]

\[p_0 = p_0 + s_w g z_2\]

\[\Rightarrow p_0 = p_0 + s_w g z_2\]

\[\Rightarrow z_2 = 0\]

\[\sum 10 \text{ Punkte}\]

Aufgabe 2

a) Wellengleichung

\[\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2}\]

\[\Rightarrow \ddot{w} = c^2 \dot{w}\]

mit

\[c^2 = \frac{N}{SA}\]

c) **Ansatz**

\[w(x, t) = \bar{X}(x) T(t)\]

in Wellengleichung einsetzen:

\[\ddot{X} = c^2 \dddot{X} T(t) = 0\]

\[\Rightarrow \ddot{X} + \omega^2 X = 0\]

\[\Rightarrow \ddot{X}' + \omega^2 T = 0\]

\[\bar{X}'' + \left(\frac{\omega}{c}\right)^2 \bar{X} = 0\]
Die allg. Lösungen lauten damit
\[T(t) = C \sin(\omega t) + D \cos(\omega t) \]
\[\ddot{x}(x) = A \sin\left(\frac{\omega}{C} x \right) + B \cos\left(\frac{\omega}{C} x \right) \]

c) Festlager auf beiden Seiten:
\[w(x=0,t) = 0 \]
\[w(x=L,t) = 0 \]
(Formeln (RB1) und (RB2))
\[\Rightarrow \ddot{x}(0) = 0 \]
\[\Rightarrow \ddot{x}(L) = 0 \]

\[\Rightarrow \ddot{x}(0) = B \frac{\omega}{C} = 0 \]
\[\Rightarrow \ddot{x}(L) = A \frac{\omega}{C} = 0 \]

\[\Rightarrow \omega = k \frac{\pi}{L} \quad k = 1, 2, 3, \ldots \]

\[\Rightarrow \ddot{x} = \frac{\pi}{L} \]

E) Ignoriere Amplituden \(A_n, B_n \) und bilde
\[\int_{x=0}^{L} \ddot{x}(t) \ddot{x}(x) \, dx = \int_{x=0}^{L} \sin\left(\frac{n \pi x}{L} \right) \sin\left(\frac{m \pi x}{L} \right) \, dx \]

Substituiere mit
\[x = \frac{\varphi}{\pi} l \quad \Rightarrow \ddot{x} = \frac{l}{\pi} \ddot{\varphi} \]
\[\Rightarrow \int_{x=0}^{L} \sin\left(\frac{n \pi x}{L} \right) \sin\left(\frac{m \pi x}{L} \right) \, dx \]
\[= \left[\frac{L}{\pi} \int_{\varphi=0}^{\pi} \sin\left(\frac{n \pi \varphi}{L} \right) \sin\left(\frac{m \pi \varphi}{L} \right) \, d\varphi \right] \]
\[= \delta_{nm} \frac{L}{\pi} \quad \text{(laut Aufgabenblatt)} \]

d) Anfangsbedingungen:
\[w(x,t=0) = \dot{w}_0 \sin\left(\frac{\pi x}{L} \right) \]
\[\ddot{w}(x,t=0) = 0 \]
(Formeln (AB1) und (AB2))

\[\Rightarrow \ddot{w}(x,t=0) = \frac{\pi^2}{L} \sum_{k=1}^{\infty} \sin\left(\frac{k \pi x}{L} \right) \left[A_k \cos\left(\frac{k \pi x}{L} \right) \right] \]

\[\Rightarrow \ddot{w}(x,t=0) = \frac{\pi^2}{L} \sum_{k=1}^{\infty} \sin\left(\frac{k \pi x}{L} \right) \left[A_k \cos\left(\frac{k \pi x}{L} \right) \right] \]

\[\Rightarrow A_k = 0 \]
(Formeln (AB1))

\[\sum_{k=1}^{\infty} B_k \sin\left(\frac{k \pi x}{L} \right) = \dot{w}_0 \sin\left(\frac{\pi x}{L} \right) \]

Koeffizientenvergleich liefert:
\[B_k = \dot{w}_0 S_{nk} \]

\[B_1 = \dot{w}_0, \quad B_2 = \dot{B}_3 = \ldots = 0 \]
(Keine Summenkonvention!)
Aufgabe 3

a) Symbolisch:
\[
\frac{\delta}{\delta t} = \nabla \cdot \epsilon + \nabla \cdot \mathbf{f}
\]
\[
\frac{\delta}{\delta t} = 0 \quad (\text{Statische})
\]
\[
\nabla \cdot \epsilon = 0 (\text{keine Gravitation})
\]

\[
\Rightarrow \nabla \cdot \epsilon = 0
\]

Indizeschreibweise:
\[
\frac{\delta v}{\delta t} = \epsilon_{ij} \frac{\partial u_i}{\partial x_j} + \mathbf{f}_i
\]
\[
\frac{\delta v}{\delta t} = 0 \quad (\text{keine Gravitation})
\]

\[
\Rightarrow \epsilon_{ij} \frac{\partial u_i}{\partial x_j} = 0
\]

Anmerkung:
Andere korrigierte Formulierungen der Impulsbilanz sind selbstverständlich auch zulässig!

b) Verzerrungstensor:
Symbolisch:
\[
\epsilon = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)
\]

Indizeschreibweise:
\[
\epsilon_{ij} = \frac{1}{2} (\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})
\]

HOEKES
 isotrop homogen
Symbolisch:
\[
\epsilon = \lambda \delta p \frac{1}{2} + 2\mu \epsilon
\]

Indizeschreibweise:
\[
\epsilon_{ij} = \lambda \delta p_0 \delta_{ij} + 2\mu \epsilon_{ij}
\]

Zurück zu 3.20 Punkte

Für inkompressible Festkörper gilt
\[
\delta p(\xi) = 0 \quad \Rightarrow \quad \epsilon_{kk} = 0
\]

Also folgt
\[
\epsilon'_{ij} = 2\mu \varepsilon_{ij}
\]

c) HOOKE in Impulsbilanz
Symbolisch:
\[
\nabla \cdot \epsilon = 2\mu \nabla \cdot \mathbf{u}
\]
\[
= \mu (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)
\]
\[
= \mu (\mathbf{u} + \nabla (\nabla \cdot \mathbf{u})) = 0
\]

\[
\Leftrightarrow \mathbf{u} + \nabla (\nabla \cdot \mathbf{u}) = 0
\]

Mit Inkompressibilität \((\nabla \cdot \mathbf{u}) = 0\) folgt
\[
\mathbf{u} = 0
\]

Indizeschreibweise:
\[
\frac{\partial \epsilon_{ij}}{\partial x_j} = 2\mu \frac{\partial \epsilon_{ij}}{\partial x_j}
\]
\[
= \mu \frac{\partial}{\partial x_j} (\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j})
\]
\[
= \mu \left(\frac{\partial^2 u_j}{\partial x_i \partial x_j} + \frac{\partial^2 u_i}{\partial x_i \partial x_j}\right) = 0
\]

Mit Inkompressibilität \((\frac{\partial u_j}{\partial x_j} = 0)\) folgt
\[
\frac{\partial \mathbf{u}}{\partial x_j} = 0
\]

d) Verschiebung in Ursprung:
\[
\mathbf{u}_0 (x = 0) = \mathbf{u}_0 (x = 0) = \mathbf{u}_0 (x = 0) = 0
\]

e) Spannungsvektor an der Oberseite:
\[
\mathbf{t} (x_1 = 0, x_2 = 0, x_3 = 0) = -\frac{E}{\lambda} \mathbf{e}_3
\]

Cauchy - Theorem:
\[
\mathbf{\sigma} |_{x_1 = 0} = -\frac{E}{\lambda} \mathbf{e}_3
\]
\[
\Rightarrow \mathbf{\sigma}_0 |_{x_1 = 0} = -\frac{E}{\lambda} \mathbf{e}_3
\]

S. 315
oder in Indezschreibweise

t_a \big|_{x_3=a} = t_2 \big|_{x_2=a} = 0

t_3 \big|_{x_2=a} = -\frac{F}{a}

Cauchy:

\[n_j G_{j3} \big|_{x_3=a} = t_3 \big|_{x_3=a} \quad \text{mit} \quad n_1 \big|_{x_1=a} = n_2 \big|_{x_2=a} = 0 \]

\[n_3 \big|_{x_3=a} = 1 \]

\[\Rightarrow G_{33} \big|_{x_3=a} = -\frac{F}{a} \]

f) Vektorielle Feldgleichung

\[\Delta \mathbf{u} = \mathbf{0} \quad \Leftrightarrow \quad \frac{\partial^2 u_i}{\partial x_j \partial x_j} = 0 \]

komponentenweise mit geg. Ansatz auswerten:

\[\begin{align*}
 i = 1: \quad & \frac{\partial^2 u_1(x_1)}{\partial x_1^2} + \frac{\partial^2 u_1(x_1)}{\partial x_2^2} + \frac{\partial^2 u_1(x_1)}{\partial x_3^2} = 0 \\
 i = 2: \quad & \frac{\partial^2 u_2(x_2)}{\partial x_2^2} = 0 \\
 i = 3: \quad & \frac{\partial^2 u_3(x_3)}{\partial x_3^2} = 0
\end{align*} \]

Also folgt:

\[\frac{d^2 u_1}{dx_1^2} = 0, \quad \frac{d^2 u_2}{dx_2^2} = 0, \quad \frac{d^2 u_3}{dx_3^2} = 0 \]

Integration liefert:

\[\begin{align*}
 u_1(x_1) &= A_1 x_1 + B_1 \\
 u_2(x_2) &= A_2 x_2 + B_2 \\
 u_3(x_3) &= A_3 x_3 + B_3
\end{align*} \]

8) Verschweißung im Ursprung \((x_1=x_2=x_3=0)\)

\[\begin{align*}
 U_1(x_1=0) &= B_1 \neq 0 \\
 U_2(x_2=0) &= B_2 \neq 0 \\
 U_3(x_3=0) &= B_3 \neq 0
\end{align*} \]

Spannungsrandbedingung

\[G_{23} \big|_{x_3=a} = 2 \mu \frac{\partial u_3}{\partial x_3 \big|_{x_3=a}} = -\frac{F}{A} \quad \text{HOOKE} \]

\[\Rightarrow \frac{du_3}{dx_3 \big|_{x_3=a}} = A_3 = -\frac{F}{2\mu A} \]

Inkompressibilität:

\[\varepsilon_{nn} = \frac{\partial u_n}{\partial x_n} + \frac{\partial u_n}{\partial x_n} + \frac{\partial u_n}{\partial x_n} = A_1 + A_2 + A_3 \neq 0. \]

Mit: Symmetrie: \(\varepsilon_{nn} = \varepsilon_{nn} \Rightarrow A_1 = A_2\)

\[A_3 = -\frac{F}{2\mu A} \]

folgt

\[A_1 = A_2 = \frac{F}{4\mu A}. \]

Alle Konstanten sind festgelegt, die Lösung ist dann

\[\begin{align*}
 u_1(x_1) &= \frac{F}{4\mu A} x_1 \\
 u_2(x_2) &= \frac{F}{4\mu A} x_2 \\
 u_3(x_3) &= -\frac{F}{2\mu A} x_3
\end{align*} \]

S. 4/5
h) Hooke:
\[\varepsilon_{ij} = 2 \mu \varepsilon_{ij}, \text{ wobei:} \]
\[\varepsilon_{xx} = \frac{\partial u_x}{\partial x_x} = \frac{F}{2A} \]
\[\varepsilon_{zz} = \frac{\partial u_z}{\partial x_z} = \frac{F}{2A} \mu \]
\[\varepsilon_{zz} = \frac{\partial u_z}{\partial x_z} = -\frac{F}{2A} \mu \]
Glätten sind Null.

→ Komponentenmatrix:
\[\varepsilon^{ij} = \frac{F}{A} \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & -1 \end{bmatrix} \]

i) Beispiel rechter Rand:
Keine Normalspannungen:
\[\sigma_{xx} (x_1 = \frac{a}{2}) = 0 \]
aber unsere Lösung liefert
\[\sigma_{xx} (x_1 = \frac{a}{2}) = \frac{F}{2A} \neq 0 \]

→ Widerspruch
→ Der Ansatz ist also ungenügend.

\[A \geq \sum_{10} \text{Punkte} \]