Bitte deutlich schreiben!
Name, Vorname:
Matr.-Nr.:
Studiengang:
Bitte links oder rechts ankreuzen!
Ergebnis ins WWW

1. Satz von CASTIGLIANO (11 Punkte)
Dargestellt ist ein System aus einem schubstarren Balken, einem Dehnstab und einer Feder. Berechnen Sie die Verdrehung φ am Lagerpunkt A unter Verwendung des Satzes von CASTIGLIANO. Gehen Sie dazu wie folgt vor:

a) Bestimmen Sie durch Freischnitt bei A und B die Normalkraft im Dehnstab N und die Zugkraft in der Feder F unter Berücksichtigung eines Hilfsmoments M_H.

b) Berechnen Sie das Schnittmoment $M(x)$ im Balken und die Normalkraft $N(z)$ im Dehnstab. Geben Sie eine Formel zur Berechnung der Formänderungsenergie des Gesamtsystems $W = W^*$ an. Einsetzen von $M(x), N(z)$ und F ist nicht nötig.

c) Berechnen Sie die gesuchte Verdrehung unter Ausnutzung von

$$\frac{\partial W}{\partial M_H} = \frac{\partial W^*}{\partial M_H} = \frac{1}{EI} \int_0^l M \frac{\partial M}{\partial M_H} \, dx + \frac{1}{EA} \int_0^l N \frac{\partial N}{\partial M_H} \, dz + \frac{E}{c} \frac{\partial F}{\partial M_H}$$

2. RITZsches Verfahren (9 Punkte)
Dargestellt ist ein schubstarrender Balken unter der Last q_0. Am rechten Ende ist eine Drehfeder (Federsteifigkeit c_M) angebracht. Bestimmen Sie eine Näherungslösung für die Durchsenkung $w(x)$. Verwenden Sie den Ansatz $w(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$. Gehen Sie wie folgt vor:

a) Passen Sie den Ansatz an die 3 geometrischen Randbedingungen an. Eliminieren Sie a_0, a_1 und a_2, und geben Sie die angepasste Ansatzfunktion an.

b) Berechnen Sie die Formänderungsenergie W und die äußere Arbeit A. Die Formänderungsenergie einer Drehfeder berechnet sich aus $W_F = \frac{1}{2} c_M \varphi^2$. Hinweis: Es gilt $\varphi(x = l) = w'(x = l)$.

c) Berechnen Sie den Freiwert a_3 aus der Bedingung $\delta(W - A) = 0$, und geben Sie damit die Näherungslösung an.