Compendium on Gradient Materials including Solids and Fluids

edited by Albrecht Bertram
Berlin, Germany
4th edition, June 2019

3.3 Finite Third-Order Gradient Thermoelasticity ... 153
 Material Isomorphy .. 156
 Material Symmetry .. 159
3.4 Finite Third-Order Gradient Thermoplasticity ... 161
 Yielding and Hardening .. 164
 Thermodynamic Consistency .. 167
 Temperature Changes .. 170
4. Nth-Order Gradient Materials under Small Deformations ... 172
 4.1 Linear Nth-Order Gradient Elasticity .. 175
 Elastic Symmetry ... 176
 4.2 Nth-Order Gradient Elastoplasticity ... 179
 4.3 Nth-Order Gradient Thermo-Elastoplasticity .. 182
 Identical Thermoelastic Behaviour .. 184
5. Second-Order Gradient Elasticity and Plasticity .. 189
 5.1 Second-Order Gradient Elasticity .. 190
 5.2 Second-Order Gradient Elasto-Plasticity ... 192
 5.3 Second-Order Gradient Thermo-Elastoplasticity .. 195
 Identical Thermoelastic Behaviour .. 197
 Appendix: On Constrained Gradient Elastoplasticity .. 208
6. On Isotropic Stiffness Hexadics .. 211
 Harmonic Decomposition ... 215
 Relations to other forms of the strain gradient elasticity .. 220
7. Internal Constraints .. 223
 7.1 Mechanical Internal Constraints .. 223
 Classical Internal Constraints .. 223
 Non-Classical Internal Constraints .. 225
 7.2 Thermomechanical Constraints ... 227
 Introduction of Internal Constraints in a Natural Way 229
8. Nth-Order Gradient Fluids .. 231
 8.1 Second-Order Incompressible Gradient Fluids ... 235
 Boundary Conditions .. 237
 Works of the Berlin School .. 238
References ... 242
Preface
of the 2nd edition of 2016

This is the second edition of the compendium following the first one from Oct. 2015. Apart from updating it and making minor corrections and improvements, three major parts have been added, namely

- at the end of Chapt. 1 the balance equations and boundary conditions for the case of third-order continua;
- Chapt. 3 describes the general N-th order material;
- Chapt. 5 investigates isotropic hexadics which appear in the second-order linear elasticity theory.

This compendium is in large parts a compilation of already published articles, which are partly paraphrased, in others modified, or extended, and brought into a unified notation.

Our intention is to present various results on gradient materials in a unified manner. It is meant as a working material which everybody may freely use. Whenever an improvement or a correction or a useful comment can be made, the compendium will be up-dated. So all users should make sure to always use the latest version.

What is the difference between this compendium and an ordinary scientific book? First of all, this is a non-profit project, just to serve scientific progress. So everybody has free access and can download it at any time. By our format, we are much less restricted by the usual rules of publication policies. We can up-date our compendium at any time.

The compendium is also not meant to be read like a book, linearly from page one till the last page. Instead, we tried to make the chapters self-contained. So it should be possible to just pick out one chapter, without having studied all the foregoing ones. In some cases this leads to repetitions and redundancy.

All researchers in the field are invited to contribute to this compendium. For this purpose please contact the editor. All comments and suggestions to improve this compendiums are also highly welcome at the same address (albrecht.bertram@ovgu.de).

The compendium is organized as follows.

In a first part we deal with balance laws for gradient materials. It will be demonstrated how the laws of motion apply to higher-order materials, and what the boundary conditions look like. This approach is based on the Principle of Virtual Power (PVP) as a continuous and linear extension of the power functional. It is compared with the procedure by CAUCHY, who started with forces as primitive concepts.

After having provided the balances, one needs constitutive laws. These are considered here for elastic and elastoplastic materials. Since there are large differences between a (geometrically)
linear theory and a finite theory, we present two frameworks for constitutive modelling, which can be read independently, since all concepts are introduced there right from the beginning.

In both cases, the full thermodynamic setting is exposed so that the restrictions by the dissipation inequality can be studied.

In linear elasticity of gradient materials, new stiffness tensors appear, the interpretation of which still needs more investigation. For the isotropic case, we added some results on hexadics. Further, the concept of internal constraints is extended to include gradient effects, both in the mechanical and in the thermodynamical setting.

The present edition from October 2016 differs only slightly from the 2nd one from January 2016, which is no longer available. In the examples of the section on Field Equations in Chapt. 1.2 the possibility of edges and corners has now been added.

Preface of the 3rd edition of 2017

In this new edition, the material theory of third-order gradient materials has been included (Chapt. 3). Moreover, some improvements, additions, and corrections have been made.

Preface of the 4th edition of 2019

Apart of some corrections and improvements and some changes in notations, a new chapter is added dealing with viscous fluids. Here we mainly report already existing results from the Berlin School from the 1980s. Moreover, we included a section on isotropic and hemitropic tensors in the introduction. These representations will be used later in the context of linear elasticity and viscosity.

While Chapt. 2 and 3 deal with finite deformations, the rest starting with Chapt. 4 deals with small deformations. It is meant that one can start with this chapter if not interested in finite deformations.

Acknowledgment. The editor was supported with helpful comments from many sides, in particular by Arnold Krawietz (Berlin), Samuel Forest (Paris), and Gerhard Silber (Funnix). This shall be gratefully acknowledged here.
List of Notations

Sets and spaces

- \mathbb{R} space of real numbers
- \mathbb{E}_{euc} three-dimensional EUCLIDean space
- \mathcal{B} body (manifold)
- $\mathcal{B}_t, \mathcal{B}_0 \subset \mathbb{E}_{\text{euc}}$ domain of the body in the current and reference placement
- $\partial \mathcal{B}_t, \partial \mathcal{B}_0 \subset \mathbb{E}_{\text{euc}}$ surface of the body in the current and reference placement
- \mathbb{V}^3 three-dimensional space of vectors (EUCLIDean shifters)
- $\delta \mathbb{V}$ space of all vector fields on \mathcal{B}_t called virtual velocities
- \mathcal{D} dyad space of linear mappings from \mathbb{V}^3 to \mathbb{V}^3 (2nd-order tensors or dyadics)
- \mathcal{I}_{inv} set of invertible dyadics (general linear group)
- $\mathcal{O}_{\text{orth}}$ set of orthogonal dyadics (general orthogonal group)
- \mathcal{P}_{sym} set of symmetric and positive-definite dyadics
- \mathcal{S}_{ym} space of symmetric dyadics
- \mathcal{A}_{skw} space of antisymmetric or skew dyadics
- $\mathcal{U}_{\text{unim}}$ set of 2nd-order tensors with determinant ± 1 (general unimodular group)
- $\mathcal{T}_{\text{triad}}$ space of all triadics with right subsymmetry
- $\mathcal{T}_{\text{tetrad}}$ space of all tetradics with subsymmetries in the last three entries
- $\mathcal{L}_{\text{lincomb}} = \mathcal{D} \times \mathcal{T}_{\text{triad}}$
- $\mathcal{C}_{\text{conf}} = \mathcal{P}_{\text{sym}} \times \mathcal{T}_{\text{triad}}$
- $\mathcal{I}_{\text{incomb}} = \mathcal{I}_{\text{inv}} \times \mathcal{T}_{\text{triad}}$
- $\mathcal{U}_{\text{unincomb}} = \mathcal{U}_{\text{unim}} \times \mathcal{T}_{\text{triad}}$

Only in Chapt. 3, the last four sets have been defined differently.

A superimposed $+$ at a dyadic set such as $\mathcal{I}_{\text{inv}}^+$ means: with positive determinant.

\mathbb{R}^+ denotes the positive reals.
Variables and Fields

\(a \in \mathcal{V}^3 \) acceleration

\(b \in \mathcal{V}^3 \) spec. body force

\(b_{\text{gen}} \in \mathcal{V}^3 \) spec. generalized body force

\(B = F F^T \in \mathcal{P}_{\text{sym}} \) left CAUCHY-GREEN tensor

\(c = \theta \partial_\theta \eta \in \mathcal{R} \) specific heat

\(C = F^T F \in \mathcal{P}_{\text{sym}} \) right CAUCHY-GREEN tensor

\(\mathbf{C} \) linear elasticity operator

\(dm \) mass element

\(dA, dA_0 \) surface element in the current and reference placement

\(dV, dV_0 \) volume element in the current and reference placement

\(d_O \in \mathcal{V}^3 \) angular momentum with respect to the point \(O \)

\(D \in \mathcal{S}_{\text{ym}} \) rate of stretching tensor

\(E \in \mathcal{S}_{\text{ym}} \) linear strain tensor

\(E^G = \frac{1}{2} (C - I) \in \mathcal{S}_{\text{ym}} \) GREEN’S strain tensor

\(f \in \mathcal{V}^3 \) (resultant) force

\(F \in \mathcal{I}_{\text{ew}^+} \) deformation gradient

\(g, g_0 \in \mathcal{V}^3 \) spatial and material temperature gradient

\(T = F \circ J^{-1} \) spatial hyperstress triadic

\(S = F^{-1} \circ J T \) material hyperstress triadic

\(I \in \mathcal{P}_{\text{ym}} \) second-order identity

\(K \in \mathcal{R} \) kinetic energy

\(\mathbf{K} = F^{-1} \cdot \text{Grad} \mathbf{F} \in \mathcal{I}_{\text{triad}} \) configuration tensor (triadic)

\(L \in \mathcal{D}_{\text{yad}} \) velocity gradient

\(m_O \in \mathcal{V}^3 \) (resultant) torque with respect to \(O \)

\(\mathbf{N} = \text{grad} \mathbf{E} \) a tetradic with left subsymmetry

\(p \in \mathcal{V}^3 \) linear momentum

\(q, q_0 \in \mathcal{V}^3 \) heat flux in the current placement and in the reference placement

\(Q \in \mathcal{R} \) heat supply
\(n \in \mathcal{V}^3 \) outer surface normal

\[
R = - \rho \partial_{\varepsilon_c} \eta e \in \mathcal{S}_{\text{ym}}
\]
2nd-order stress-temperature tensor

\[
R = - \rho \partial_{\varepsilon_m} \eta e
\]
3rd-order stress-temperature tensor

\[
S = F^{-1} \ast J T \in \mathcal{S}_{\text{ym}}
\]
PIOLA-KIRCHHOFF stress tensor

\(t \in \mathbb{R} \) time

\(t \in \mathcal{V}^3 \) traction vector

\(T \in \mathcal{S}_{\text{ym}} \) CAUCHY’s stress tensor

\(\mathcal{T} \) hyperstress tensor of \(i \)-th order

\(u \in \mathcal{V}^3 \) displacement

\[U^{(i)} := \text{grad}^i u \] \(i \)-th displacement gradient (tensor field of order \(i+1 \))

\[U = \text{grad} \text{grad} u \] a triadic with right subsymmetry in Chapt. 5

\(v \in \mathcal{V}^3 \) velocity

\(w \in \mathbb{R} \) elastic energy

\(W \in \mathcal{B}_{\text{wo}} \) spin tensor

\(x, x_0 \in \mathcal{V}^3 \) position vector in current and reference placement

\(Z \) hardening variables

Greek letters

\(\partial_x f \) partial derivative of a function \(f \) with respect to some variable \(x \)

\(\delta \) virtual, in Chapt. 8 dissipation potential

\(\delta \) dissipation potential in Chapt. 8

\(\Delta \) LAPLACE operator

\(\varepsilon \in \mathbb{R} \) internal energy

\(\varepsilon \) permutation triadic

\(\chi \in \mathcal{V}^3 \) motion

\(\varphi \) yield criterion

\(\kappa, \kappa_0 \) current and reference placement

\(\lambda \in \mathbb{R} \) plastic parameter

\(\eta \in \mathbb{R} \) specific entropy
\(\Pi_e, \pi_e \in \mathbb{R} \)
- external power (global and specific)
\(\Pi_i, \pi_i \in \mathbb{R} \)
- internal or stress power (global and specific)
\(\rho, \rho_0 \in \mathbb{R}^+ \)
- density in current and reference placement
\(\psi = \varepsilon - \theta \eta \in \mathbb{R} \)
- free HELMHOLTZ energy
\(\omega \in \mathbb{V}^* \)
- angular momentum
\(\theta, \theta_0 \in \mathbb{R}^+ \)
- temperature, reference temperature

Symbols

\(\nabla, \nabla_\theta \)
- nabla in current and reference placement
\(\otimes \)
- tensor product
\(\ast \)
- RAYLEIGH product Eq. (0.4)
\(\circ \)
- pull-back or push-forward operation Eq. (0.16)
\(<, > \)
- inner product of hyper-vectors in Chapt. 4 Eq. (4.3) and Chapt. 8
0. Introduction

Classical mechanics are based on EULER’s equations of motion, i.e., the balance of linear momentum and of angular momentum. These equations combine kinematical quantities like momenta with dynamic quantities like forces and torques. While the kinematical quantities are directly measurable within geometry and chronometry, the dynamic ones do not have this property. Forces are not visible, audible, tangible, etc., or how LAGRANGE (1788, p. 1) expressed it:

On entend, en général, par force ou puissance la cause, quelle qu’elle soit, qui imprime ou tend à imprimer du mouvement au corps auquel on la suppose appliquée.

and very similar also LAPLACE (1799, p. 4)

La nature de cette modification singulière, en vertu de laquelle un corps est transporté d’un lieu dans un autre, est et sera toujours inconnue; on l’a désignée sous le nom de force; on ne peut déterminer que ses effets et les lois de son action.

This is surely the reason why it took so long in the history of mechanics to develop the concepts of forces (STEVIN 1586), gravitation (HOOKE and NEWTON et al. around 1680), distributed forces (EULER et al. 18th century), and stresses (CAUCHY 1823).

In principle, a precise introduction of the dynamic quantities is rather controversial. Is NEWTON’s law the definition of force as mass times acceleration? Then this law would be a triviality, which can neither be verified nor falsified. Or do we understand forces as primitive concepts, which would also make them "untouchable"?

For EULER and CAUCHY and many others it was natural to distribute forces into the categories of contact forces and of volumetric forces. After additional assumptions, CAUCHY could then introduce the stress tensor to determine the traction vector on the surface of the body.

The overwhelming success of this approach has at least two reasons. Firstly, it was the most simple approach to take contact actions on the surface into account. And secondly, by his stress concept already a great majority of effects can be described reasonably well.

However, there are certain effects in mechanics which cannot be described by a CAUCHY continuum. Whenever size effects appear, a theory which allows for internal length scales is needed. From the beginning of the 20th century, a variety of non-classical theories has been suggested to overcome the shortcomings of the CAUCHY continuum. The COSSERATs added 1909 micro-rotations and micro-torques to the continuum concepts and thus created the polar media. This was later broadened to not only introduce micro-rotations, but also micro-deformations, leading to micromorphic theories (ERINGEN 1999).

Another approach is that of considering higher gradients of the displacements. This line has been mentioned already by PIOLA (1845)\(^1\), CAUCHY (1851), and ST.-VENANT (1869b), and was initiated by KORTEWEG (1901) and Rudolf TRÖSTEL (1985) for fluids, and by TOUPIN (1962), GREEN/ RIVLIN (1964a and b), and MINDLIN (1965) within elasticity, and

\(^1\) see DELL’ISOLA/ ANDREAUS/ PLACIDI (2015)
later induced also for plasticity. The appealing feature of these theories is that no new kinematical concepts like COSSERATs’ micro spins had to be invented, since only the higher derivatives of the classical displacements are considered.

In the present work we will exclusively deal with this latter class of theories. We will see how the CAUCHY continuum is imbedded in gradient theories as one particular step in an infinite cascade of higher-order theories. The higher this order is, the more effects can we describe, at the cost of an enormous growth of variables and equations. It seems that nature does not tell us how far we have to go, but leaves us to choose a theory of some particular order which allows us to model the effects of our concern, and avoiding to complicate the theory where it is not necessary.
Tensor Notations

In general, \(T \) denotes a tensor of \(k \)-th order. As exceptions, we denote vectors (first-order tensors) eventually by bold small letters like \(\mathbf{a}, \mathbf{b}, \mathbf{c} \), second-order tensors or dyadics by bold capital letters like \(\mathbf{A}, \mathbf{B}, \mathbf{C} \), and third-order tensors or triadics like \(\mathbf{A}, \mathbf{B}, \mathbf{C} \).

For every contraction between tensors we put one dot. More exactly, the \(P \)-fold contraction of a \(K \)-fold tensor product \(\mathbf{v}_1 \otimes \ldots \otimes \mathbf{v}_K \) with an \(M \)-fold tensor product \(\mathbf{x}_1 \otimes \ldots \otimes \mathbf{x}_M \) for \(K \geq P \leq M \) is the \((K+M-2P)\)-fold tensor product

\[
(\mathbf{v}_1 \otimes \ldots \otimes \mathbf{v}_K) \cdot \ldots \cdot (\mathbf{x}_1 \otimes \ldots \otimes \mathbf{x}_M)
\]

wherein " \(\cdot \ldots \cdot \)" stands for \(P \) contraction dots. For better visibility, we will eventually arrange these contraction dots in groups with identical meaning, like \(\therefore \) for \(\cdots \), and \(:: \) for \(\cdots \cdots \). These notions can be immediately and uniquely extended from tensor products to higher-order tensors.

The invariants of a dyadic \(\mathbf{T} \) are denoted by \(I_T = \text{tr} \mathbf{T} \), \(II_T \), and \(III_T = \text{det} \mathbf{T} \).

For a dyadic \(\mathbf{T} \), the symmetric part is \(\text{sym}(\mathbf{T}) \), the skew part is \(\text{skw}(\mathbf{T}) \), and the axial vector of the skew part of \(\mathbf{T} \) is noted as \(\text{axi}(\mathbf{T}) \). The latter is defined by its action on an arbitrary vector \(\mathbf{v} \) according to

\[
\text{skw}(\mathbf{T}) \cdot \mathbf{v} = \text{axi}(\mathbf{T}) \times \mathbf{v}.
\]

While a second-order tensor \(\mathbf{T} \) has a unique transpose \(\mathbf{T}^T \), a third-order tensor or triadic has more than one. We will mainly need the right sub-transpose \(\mathbf{A}^t \) which gives for the components with respect to an orthonormal vector basis \((A^t)_{ijk} = A_{ijk} \). If a triadic is symmetric with respect to this particular transposition, we call it right subsymmetric. The left subsymmetry is then \(A_{ijk} = A_{jik} \). The dimension of the space of all triadics is \(3^3 = 27 \). If one of the subsymmetries is assumed it is only 18.

For two triadics we obtain then

\[
\mathbf{A}^t : : \mathbf{B} = \mathbf{A} : : \mathbf{B}^t.
\]

Very helpful for higher-order tensors is the RAYLEIGH product. It maps all basis vectors of a tensor simultaneously without changing its components. To be more precise, let \(\mathbf{C} \) be a tensor of \(k \)-th order \((k \geq l)\) and \(\mathbf{T} \) a dyadic. Then the RAYLEIGH product between them is defined as

\[
(\mathbf{T} \cdot \mathbf{C}) = \mathbf{T} \ast (C^{ij_1 \ldots i_k} r_{i_1} \otimes r_{i_2} \otimes \ldots \otimes r_{i_k})
\]

\[
= C^{ij_1 \ldots i_k} (\mathbf{T} \cdot r_{i_1}) \otimes (\mathbf{T} \cdot r_{i_2}) \otimes \ldots \otimes (\mathbf{T} \cdot r_{i_k}).
\]

Of course, the result does not depend on the choice of the basis. If \(\mathbf{T} \) is proper orthogonal, then the product is a rotation of \(\mathbf{C} \).
For $k \equiv 1$ the RAYLEIGH product coincides with a linear mapping

$$T \ast c = T \cdot c,$$

and for $k \equiv 2$ we obtain

$$T \ast C = T \cdot C \cdot T^T.$$

The RAYLEIGH product is associative in the left factor

$$S \ast (T \ast C) = (S \cdot T) \ast C$$

and distributive in the right one. In fact, if $\langle k \rangle$ and $\langle n \rangle$ are tensors of arbitrary order, then we have

$$T \ast (\langle k \rangle \otimes \langle n \rangle) = (T \ast \langle k \rangle) \otimes (T \ast \langle n \rangle)$$

for all dyadics T. This does not hold, if we would replace the tensor product by an arbitrary contraction, unless T is orthogonal.

In this product, the second-order identity tensor also gives the identity mapping

$$I \ast \langle k \rangle = \langle k \rangle.$$

The inversion for an invertible dyadic T is done by

$$T \ast (T^{-1} \ast \langle k \rangle) = \langle k \rangle = T^{-1} \ast (T \ast \langle k \rangle).$$

The RAYLEIGH product commutes with the contraction with the inverse in the following sense

$$T^{-1} \cdot (T \ast \langle k \rangle) = T \ast (T^{-1} \cdot \langle k \rangle).$$

For two second-order tensors A (invertible) and B and a higher-order tensor $\langle k \rangle$ we obtain the rule

$$B \cdot A^{-I} \cdot (A \ast \langle k \rangle) = A \ast (A^{-I} \cdot B \cdot \langle k \rangle).$$

For the k-fold scalar product of two arbitrary kth-order tensors we get

$$(T \ast \langle k \rangle) \cdot ... \cdot \langle k \rangle \cdot D = \langle k \rangle \cdot ... \cdot (T^T \ast \langle k \rangle \cdot D).$$

The RAYLEIGH product acts on a simple triadic like

$$T \ast (a \otimes b \otimes c) = (T \cdot a) \otimes (T \cdot b) \otimes (T \cdot c)$$

$$= (T \cdot a) \otimes (T \cdot b) \otimes c \cdot T^T$$

$$= T \cdot (a \otimes c \otimes b \cdot T^T)^I \cdot T^T$$

and analogously on a triadic A

$$T \ast A = T \cdot (A^I \cdot T^T)^I \cdot T^T.$$
Besides the RAYLEIGH product, we will need another product between an invertible dyadic T and a higher-order tensor A denoted by

$$T \circ A := A_{ij,...k}(T^{-T} \cdot e_i) \otimes (T \cdot e_j) \otimes ... \otimes (T \cdot e_k). \tag{0.16}$$

By (0.15) we find the relation with the RAYLEIGH product

$$= T * (T^{-T} \cdot T^{-T} \cdot A) \tag{0.16}$$

or with (0.12)

$$= T^{-T} \cdot T^{-T} \cdot (T * A). \tag{0.16}$$

The following rules hold for this product under a complete contraction (scalar product)

$$(T \circ A) \cdot ... \cdot B = A \cdot ... \cdot (T^T \circ B) \tag{0.17}$$

for all dyadics T and all tensors of same order A and B.

The second-order identity tensor also gives the identity mapping

$$I \circ A = A \tag{0.18}$$

and the inversion is done by

$$T \circ (T^{-I} \circ A) = A. \tag{0.19}$$

Furthermore, the product is associative

$$S \circ (T \circ A) = (S \cdot T) \circ A \tag{0.20}$$

for all dyadics S and T and triadics A.

For the case of T being orthogonal, this transformation coincides with the RAYLEIGH product.

We denote an arbitrary basis by $\{r_i^j\}$ and its dual by $\{r^i_j\}$. In particular, such bases occur as the natural bases induced by a coordinate system $\{\varphi^i_j\}$ and then written as $\{r_{\varphi i}^j\}$ and $\{r_{\varphi j}^i\}$.

An orthonormal vector basis is written as $\{e_i\}$.

Partial transpositions for higher-order tensors are defined in the following way.

$$\mathcal{C}^{(k)}_{ij...m} = (C_{i1i2...ik}^r r_{i1} \otimes ... \otimes r_{im} \otimes ... \otimes r_{ij} \otimes ... \otimes r_{ik}) \tag{0.21}$$

For triadics we have $A' = A^{[23]}$ as an alternative notation.

The following symmetrisations will be needed for a tetradic

$$\text{sym}(\mathcal{C}) := 1/3 (\mathcal{C} + \mathcal{C}^{[24]} + \mathcal{C}^{[23]}). \tag{0.22}$$
0.1 Hemitropic and Isotropic Tensors

The following concepts will be important for the representation of material laws for which certain symmetry assumptions apply.

Definition 0.1

We call a tensor of \(k \)-th order \((k \geq 1)\) \(C \) isotropic if

\[
(0.23) \quad C = Q \ast C
\]

holds for all orthogonal tensors \(Q \).

We call it **hemitropic** if (0.23) holds for all proper orthogonal tensors \(Q \).

Hemitropic tensors up to 8th-order have been listed by KEARSLY/FONG (1975). Those of 5th-order can be already been found in CISOTTI (1932) and CALDONAZZO (1932). RACAH (1933) gives the number of independent hemitropic tensors of arbitrary order. WEYL (1939) shows that all even-order hemitropic tensors can be composed by transpositions of the second-order identity, while odd-order ones need a permutation tensor in addition. In SCHOLZ (1992) an algorithm is given for the construction of higher-order isotropic tensors.

The following statements can be easily verified.

- The zero tensors of all orders are both isotropic and hemitropic. Therefore we are only interested in non-trivial solutions.

- With each isotropic/hemitropic tensor also every scalar multiple of it is again isotropic/hemitropic. The same holds for linear combinations of isotropic/hemitropic tensors.

- Every isotropic tensor is also hemitropic.

- Every even-order hemitropic tensor is also isotropic.

- Among the odd-order tensors, there are only trivial isotropic tensors.

1st-order isotropic tensors

or vectors: only the zero vector is isotropic/hemitropic. Non-trivial isotropic/hemitropic tensors of this order do not exist.

2nd-order isotropic/ hemitropic tensors

are scalar multiples of the second-order identity tensor \(I \).

\(^2\) see also SILBER (1986, 1988) and TROSTEL (1993)
3rd-order hemitropic tensors
are scalar multiples of the epsilon or permutation tensor \(\varepsilon \). Non-trivial isotropic triadics do not exist.

4th-order isotropic/ hemitropic tensors
are scalar multiples of
- \(\mathbf{I} \otimes \mathbf{I} \),
- the fourth-order identity tensor \(\mathbf{I}^{(4)} \)
- the transposer \(\mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_j \otimes \mathbf{e}_i \).

We will later need such tetradics as linear mappings between symmetric second-order tensors. In this particular case, the identity tetradic and the transposer give the same result

\[
\mathbf{I}^{(4)} \cdot \mathbf{T} = \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_j \otimes \mathbf{e}_i \cdot \mathbf{T}
\]

for all symmetric dyadics \(\mathbf{T} \). So only one of them will be needed.

5th-order hemitropic tensors
are scalar multiples of products between the second order identity and the permutation tensor after WEYL (1939). Ten of them have been listed by, e.g., CALDONAZZO (1932), KEARSLEY/FONG (1975), and SILBER (1988)

\[
\begin{align*}
\mathbf{H}_1 &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_l \otimes \mathbf{e}_j \otimes \mathbf{e}_l \otimes \mathbf{e}_k = \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{I} \otimes \mathbf{e}_j \otimes \mathbf{e}_k \\
\mathbf{H}_2 &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_l \otimes \mathbf{e}_j \otimes \mathbf{e}_l \otimes \mathbf{e}_k = \mathbf{H}_1^{[34]} \\
\mathbf{H}_3 &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_l \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l = \mathbf{H}_2^{[45]} \\
\mathbf{H}_4 &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_l \otimes \mathbf{e}_k \otimes \mathbf{e}_l = \varepsilon \cdot \mathbf{I} \\
\mathbf{H}_5 &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_l \otimes \mathbf{e}_k \otimes \mathbf{e}_l = \mathbf{H}_5^{(4)} \\
\mathbf{H}_6 &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l \otimes \mathbf{e}_l = \mathbf{H}_6^{(5)} \\
\mathbf{H}_7 &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_l \otimes \mathbf{e}_j \otimes \mathbf{e}_j \otimes \mathbf{e}_k = \mathbf{I} \otimes \mathbf{H}_7^{(5)} \\
\mathbf{H}_8 &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_l \otimes \mathbf{e}_j \otimes \mathbf{e}_j \otimes \mathbf{e}_k = \mathbf{I} \cdot \mathbf{H}_8^{(5)} \\
\mathbf{H}_9 &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_k = \mathbf{H}_9^{[12]} \\
\mathbf{H}_{10} &= \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l = \mathbf{H}_{10}^{[45]}.
\end{align*}
\]

All of them can be mutually transformed into one another by transpositions.
Not all of these tensors are linearly independent. In fact, CALDONAZZO (1932) and SILBER (1988) give the following linear dependencies

\[
\begin{align*}
\mathbf{H}_3 + \mathbf{H}_6 &= \mathbf{H}_5 + \mathbf{H}_{10} \\
\mathbf{H}_1 + \mathbf{H}_5 &= \mathbf{H}_4 + \mathbf{H}_8 \\
\mathbf{H}_2 + \mathbf{H}_6 &= \mathbf{H}_4 + \mathbf{H}_9 \\
\mathbf{H}_2 + \mathbf{H}_7 &= \mathbf{H}_1 + \mathbf{H}_3
\end{align*}
\]

so that four hemitropic tensors can be purged from the list and only six remain.

In the sequel we will need such hemitropic pentadics as linear mappings between triadics and dyadics or in forms like

\[
\mathbf{V} \cdots \mathbf{H} : \mathbf{V}
\]

with symmetric dyadics \(\mathbf{V}\) and triadics \(\mathbf{H}\) with right subsymmetry. Therefore we can demand a symmetry in the first and in the last two entries. For this reason \(\mathbf{H}_1, \mathbf{H}_4, \mathbf{H}_5, \mathbf{H}_6, \mathbf{H}_7, \mathbf{H}_8\) will not be needed.

Only scalar multiples of the following hemitropic pentadic

\[
\mathbf{H}_2 + \mathbf{H}_3 + \mathbf{H}_9 + \mathbf{H}_{10}
\]

\[
(0.27) = \varepsilon_{ijk} \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k + \varepsilon_{ijk} \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l + \varepsilon_{ijk} \mathbf{e}_k \otimes \mathbf{e}_l \otimes \mathbf{e}_m + \varepsilon_{ijk} \mathbf{e}_l \otimes \mathbf{e}_m \otimes \mathbf{e}_i
\]

show all the required symmetries. However, this gives the same results as any of them

\[
\mathbf{V} \cdots \frac{1}{4} (\mathbf{H}_2 + \mathbf{H}_3 + \mathbf{H}_9 + \mathbf{H}_{10}) \cdots \mathbf{V}
\]

\[
(0.28) = \mathbf{V} \cdots \mathbf{H}_2 \cdots \mathbf{V} = \mathbf{V} \cdots \mathbf{H}_3 \cdots \mathbf{V} = \mathbf{V} \cdots \mathbf{H}_9 \cdots \mathbf{V} = \mathbf{V} \cdots \mathbf{H}_{10} \cdots \mathbf{V}
\]

\[
= \mathbf{V} \cdots (\varepsilon \cdots \mathbf{V}) = (\varepsilon \cdots \mathbf{V}) \cdots \mathbf{V}
\]

for all symmetric dyadics \(\mathbf{V}\) and triadics \(\mathbf{H}\) with right subsymmetry.

6th-order isotropic/ hemitropic tensors

KEARSLY/ FONG (1975) give the following complete list of 15 isotropic tensors

\[
\mathbf{H}_1 = \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l \otimes \mathbf{e}_m \otimes \mathbf{e}_n = \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{I}
\]

\[
\mathbf{H}_2 = \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_m \otimes \mathbf{e}_n \otimes \mathbf{e}_n = \mathbf{I} \otimes \mathbf{e}_k \otimes \mathbf{e}_m \otimes \mathbf{e}_m
\]

\[
\mathbf{H}_3 = \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_m \otimes \mathbf{e}_n \otimes \mathbf{e}_n = \mathbf{I} \otimes \mathbf{e}_k \otimes \mathbf{I} \otimes \mathbf{e}_m
\]
\[\mathcal{H}_6 = e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_m \otimes e_i = e_i \otimes e_k \otimes e_k \otimes e_i \otimes e_m \otimes e_i \]

\[\mathcal{H}_9 = e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_m \otimes e_m \]

\[\mathcal{H}_6 = e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_m \otimes e_i \otimes e_k \]

\[\mathcal{H}_7 = e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_m \otimes e_k \]

\[\mathcal{H}_6 = e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_i \otimes e_k \]

\[\mathcal{H}_6 = e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_m \otimes e_i \otimes e_k \]

\[\mathcal{H}_6 = e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_m \otimes e_k \]

\[\mathcal{H}_6 = e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_m \otimes e_k \]

\[\mathcal{H}_6 = e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_k \otimes e_i \otimes e_m \otimes e_k \]

all of which are transpositions of the hexadic \(I \otimes I \otimes I \).

In the sequel we are interested in such hexadics as symmetric square forms of triadics like

\[V \colon \mathcal{H} \colon V \]

with triadics \(V \) which have the right subsymmetry. Accordingly, the hexadics can be symmetric in the second and third entry, as well as in the fourth and sixth entry, and also have the major symmetry. Under this assumption, only the following hexadics are needed.

\[(3.30) \]

\[V \colon \mathcal{H} \colon V \]

so that

\[V \colon \frac{1}{2} (\mathcal{H}_8 + \mathcal{H}_9) \colon V = V \colon \mathcal{I} \colon V = V \colon V \]

Here \(\frac{1}{2} (\mathcal{H}_8 + \mathcal{H}_9) \) does the same as the sixth-order identity \(\mathcal{I} \).
This hexadic does the same as the symmetric transposer \(\frac{1}{2} (\mathbf{I}^{[12]} + \mathbf{I}^{[13]}) \).

(0.31.3) \[\mathcal{H}_7 = \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l \otimes \mathbf{e}_m \otimes \mathbf{e}_n = \mathbf{e}_i \otimes \mathbf{I} \otimes \mathbf{e}_j \otimes \mathbf{I} \]
so that
\[\mathcal{V} :: \mathcal{H}_7 :: \mathcal{V} = (\mathcal{V} \cdot \mathbf{I}) \cdot (\mathcal{V} \cdot \mathbf{I}) \]

(0.31.4) \[\mathcal{H}_1 + \mathcal{H}_4 + \mathcal{H}_{13} + \mathcal{H}_{10} \]
\[= \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_m \otimes \mathbf{e}_n \]
so that
\[\mathcal{V} :: \frac{1}{4} (\mathcal{H}_1 + \mathcal{H}_4 + \mathcal{H}_{13} + \mathcal{H}_{10}) :: \mathcal{V} = \mathcal{V} :: \mathbf{e}_i \otimes \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{e}_j :: \mathcal{V} \]
\[= (\mathcal{V} \cdot \mathbf{I}) \cdot (\mathbf{I} \cdot \mathcal{V}) \]

(0.31.5) \[\mathcal{H}_2 + \mathcal{H}_5 + \mathcal{H}_6 \]
\[= \mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_k \otimes \mathbf{e}_l \otimes \mathbf{e}_m \]
so that
\[\mathcal{V} :: \frac{1}{4} (\mathcal{H}_2 + \mathcal{H}_5 + \mathcal{H}_6) :: \mathcal{V} = \mathcal{V} :: \mathbf{I} \otimes \mathbf{e}_i \otimes \mathbf{I} \otimes \mathbf{e}_j :: \mathcal{V} \]
\[= (\mathbf{I} \cdot \mathcal{V}) \cdot (\mathbf{I} \cdot \mathcal{V}) \]
6th-order hemitropic tensors are also linear combinations of all transpositions of the hexadic \(\varepsilon \otimes \varepsilon \). However, due to the imposed subsymmetries they do not enter the square form (0.30).

7th-order hemitropic tensors
KEARSLY/ FONG (1975) give the complete list of 45 hemitropic tensors of 7th-order, of which only 36 are linearly independent.

8th-order isotropic/ hemitropic tensors
KEARSLY/ FONG (1975) give the complete list of 105 isotropic tensors of 8th-order, of which only 91 are linearly independent.

The *general hemitropic symmetric square form* of a dyadic and a triadic has the form

\[
\delta \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \frac{1}{2} V \cdot \cdot D_{22} \cdot \cdot V + \frac{1}{2} V \cdot \cdot D_{23} \cdot \cdot V + \frac{1}{2} V \cdot \cdot D_{33} \cdot \cdot V
\]

with three hemitropic tensors

\[
D_{22}^{(4)} = \alpha_1 I \otimes I + \alpha_2 I
\]

\[
D_{23}^{(5)} = \frac{\alpha_3}{4} (H_2^2 + H_3^2 + H_9 + H_{10})
\]

or, e.g.,

\[
D_{33}^{(6)} = \alpha_4 I + \alpha_5 /2 (I \cdot \cdot [12] + I \cdot \cdot [13])
\]

\[
+ \alpha_6 \varepsilon_i \otimes I \otimes \varepsilon_i \otimes I + \alpha_7 \varepsilon_i \otimes I \otimes \varepsilon_i + \alpha_8 I \otimes \varepsilon_i \otimes I \otimes \varepsilon_i
\]

which gives

\[
2 \delta \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \alpha_1 tr^2 V + \alpha_2 V \cdot \cdot V
\]

\[
+ 2 \alpha_3 (V \cdot \cdot (\varepsilon \cdot \cdot V))
\]

\[
+ \alpha_4 (V \cdot \cdot V) + \alpha_5 /2 (V \cdot \cdot (V \cdot \cdot [12] + V \cdot \cdot [13]))
\]

\[
+ \alpha_6 (V \cdot \cdot I \cdot (V \cdot \cdot I) + \alpha_7 (I \cdot \cdot V) \cdot (V \cdot \cdot I) + \alpha_8 (I \cdot \cdot I) \cdot (V \cdot \cdot I)
\]

For \(\alpha_3 \equiv 0 \) it becomes the *general isotropic symmetric square form*.

The differential of this form is

\[
d\delta \left(\begin{array}{c} 2 \\ 3 \\ 2 \end{array} \right) = \delta \left(\begin{array}{c} 2 \\ 3 \end{array} \right) (I \cdot \cdot dV) + \alpha_2 (V \cdot \cdot dV)
\]

\[
+ \alpha_3 (dV \cdot \cdot (\varepsilon \cdot \cdot dV)) + \alpha_5 /2 (V \cdot \cdot [12] + V \cdot \cdot [13]) \cdot (dV \cdot \cdot I) + \alpha_6 (V \cdot \cdot dV) \cdot (dV \cdot \cdot I)
\]
\[
+ \alpha_7/2 (I \cdot \mathbf{dV}) \cdot (\mathbf{V} \cdot I) + \alpha_7/2 (I \cdot \mathbf{V}) \cdot (d\mathbf{V} \cdot I) + \alpha_8 (I \cdot \mathbf{V}) \cdot (I \cdot d\mathbf{V}) \\
= [\alpha_1 (\text{tr} \mathbf{V}) I + \alpha_2 I \cdot \mathbf{V} + \alpha_3 \mathbf{e} \cdot \mathbf{V}] \cdot d\mathbf{V}
\]
\[
+ \alpha_3 \mathbf{e} \cdot \mathbf{V} + \alpha_4 \mathbf{V} + \alpha_5/2 (\mathbf{V}^{[12]} + \mathbf{V}^{[13]}) + \alpha_6 \mathbf{e}_i \otimes I \otimes e_j \otimes I \cdot \mathbf{V}
\]
\[
+ \alpha_7/2 \mathbf{I} \otimes \mathbf{I} \otimes \mathbf{I} \cdot \mathbf{V} + \alpha_8 \mathbf{I} \otimes \mathbf{e}_i \otimes \mathbf{I} \otimes \mathbf{e}_j \cdot \mathbf{V} \] \cdot d\mathbf{V}
\]

The derivatives are

\[
(0.35) \quad \partial_{(2)} \partial (\mathbf{V}, \mathbf{V}) = \alpha_1 (\text{tr} \mathbf{V}) I + \alpha_2 \mathbf{V} + \alpha_3 \mathbf{e} \cdot \mathbf{V}
\]
\[
(0.36) \quad \partial_{(3)} \partial (\mathbf{V}, \mathbf{V}) = \alpha_3 \mathbf{e} \cdot \mathbf{V} + \alpha_4 \mathbf{V} + \alpha_5/2 (\mathbf{V}^{[12]} + \mathbf{V}^{[13]})
\]
\[
+ \alpha_6 \mathbf{I} \otimes \mathbf{I} + \alpha_7/2 \mathbf{I} \otimes \mathbf{V} + \mathbf{I} \cdot \mathbf{V} \otimes \mathbf{I} + \alpha_8 \mathbf{I} \otimes \mathbf{I} \cdot \mathbf{V}.
\]

These tensors can be further symmetrized.

0.2 Kinematics

We denote by
\[\text{Eucl} \]
the three-dimensional EUCLIDEan space
\[\mathcal{V}^3 \]
the three-dimensional vector space of EUCLIDEan shifters
\[B \]
the body (manifold)
\[B_0 \subset \text{Eucl} \]
the domain of the body in the reference placement with surface \(\partial B_0 \)
\[B_t \subset \text{Eucl} \]
the domain of the body in the current placement with surface \(\partial B_t \)

A placement of the body \(B \) at a time \(t \) is an embedding (bijective)
\[\kappa(\bullet, t) : B \rightarrow B_t \subset \text{Eucl}. \]

While the time \(t \) runs through a finite time interval \(I := [0, t_e] \), the parameterized sequence of placements defines a motion of the body.

It is rather customary (although not necessary) to introduce a (time- and observer-independent) reference placement
\[(0.37) \]
\[\kappa_0 : B \rightarrow B_0 \subset \text{Eucl} \]
which is also assumed to be bijective. The composition of its inverse with a motion
\[(0.38) \]
\[\chi(\bullet, t) := \kappa(\kappa_0^{-1}(\bullet), t) : B_0 \rightarrow B_t \subset \text{Eucl} \]
is the EUCLIDEan description of a motion of the body, being for all times \(t \) a bijection between the regions \(B_0 \) and \(B_t \) of the EUCLIDEan space. Practically, one would describe this function either by coordinates or by position vectors. The latter leads to a mapping
\[(0.39) \]
\[\chi : \mathcal{V}^3 \times I \rightarrow \mathcal{V}^3 \]
or
\[(0.40) \]
\[x = \chi(x_0, t) \]
with the position vector of a material point \(x_0 \) in the reference placement and \(x \) in the current placement.

The volume and surface elements in the current placement are \(dV \) and \(dA \), and in the reference placement \(dV_0 \) and \(dA_0 \), respectively. The mass element is \(dm \) for which a distinction of the two placements is not necessary because of mass conservation. The mass densities in the two placements are denoted by \(\rho \) and \(\rho_0 \), respectively. The nabla operator in the reference placement is denoted as \(\nabla_0 \), and simply \(\nabla \) in the current placement. If we consider tensor fields of any order, we have at least three choices of representations.

1.) We can introduce the field as a mapping from the body manifold
\[(0.41) \]
\[\phi_I : B \rightarrow \text{Lin} \]
where \(\mathbf{Lin} \) stands for the particular tensor space. This can be done by convected coordinates and is called intrinsic description.

2.) We can introduce the field as a mapping from the region \(\mathcal{B}_0 \subset \mathbb{E}_{\text{ecl}} \) which the body occupies in the reference placement

\[
\phi_L : \mathcal{B}_0 \rightarrow \mathbf{Lin}.
\]

This can be done by material coordinates and is called material or LAGRANGean description.

3.) We can introduce the field as a mapping from the region \(\mathcal{B}_t \) which the body occupies in the reference placement

\[
\phi_E : \mathcal{B}_t \rightarrow \mathbf{Lin}.
\]

This can be done by spatial coordinates and is called spatial or EULERean description.

By the motion (0.37) - (0.38) we are able to uniquely transform any of these descriptions into any other.

When using gradients or differentials of such fields, we have to take care of these different choices. So \(\text{grad} \), \(\text{div} \) and \(\text{curl} \) are related to the gradient, divergence, and curl operation respectively in the current placement, while \(\text{Grad} \), \(\text{Div} \), and \(\text{Curl} \) are related to the same operations in the reference placement.

The (material) gradient of the motion (0.40) with respect to the first argument is the deformation gradient

\[
F(x_0, t) = \text{Grad} \chi(x_0, t) = \chi(x_0, t) \otimes \nabla_0 \in \mathcal{I}^{\text{inv}+}.
\]

The transformations of the nablas in the reference and the current placement is after the chain rule

\[
\nabla_0 = \nabla \cdot F = F^T \cdot \nabla \quad \text{and} \quad \nabla = \nabla_0 \cdot F^{-1} = F^{-T} \cdot \nabla_0.
\]

The linear strain tensor is

\[
E := \frac{1}{2}(F + F^T - 2I) \in \mathcal{I}^{\text{sym}}.
\]

The velocity field is the first partial time derivative

\[
v(x_0, t) = \chi(x_0, t)^*\]

and the acceleration field the second time derivative

\[
a(x_0, t) = \chi(x_0, t)^{**}\]

of the motion (0.40). The (spatial) velocity gradient is

\[
L = \text{grad} v = v \otimes \nabla = \text{grad} \chi^* \in \mathcal{D}_{\text{symad}}
\]

which can be decomposed into its symmetric part \(\mathbf{D} \) and its skew part \(\mathbf{W} \) as

\[
L = \mathbf{D} + \mathbf{W}.
\]

The time derivative of the deformation gradient is related to the velocity gradient by

\[
L = F^* \cdot F^{-1}.
\]
The right CAUCHY-GREEN tensor is defined as
\begin{equation}
C := F^T \cdot F \in \mathcal{P}_{\text{sym}}
\end{equation}
and the left CAUCHY-GREEN tensor
\begin{equation}
B := F \cdot F^T \in \mathcal{P}_{\text{sym}}
\end{equation}
and GREEN’s strain tensor
\begin{equation}
E^G := \frac{1}{2} (C - I) \in \mathcal{S}_{\text{sym}}
\end{equation}
such that
\begin{equation}
E^{G*} = \frac{1}{2} C^* = F^T \ast D \in \mathcal{S}_{\text{sym}}.
\end{equation}
1. Balance Laws

The prominent fundamental aim of mechanics is to decide whether a given motion of a body is (dynamically) admissible or not. Such a decision is based on certain axioms, which can later be reformulated by equivalent statements. For the selection of such axioms, different choices exist. The classical way to do this is based on what we call today EULER's equations of motion.

It is the intention of this chapter to introduce a series of (equivalent) sets of balance equations or equivalent formulations, which altogether assure the dynamic admissibility of a motion. Constitutive equations are beyond the scope of this chapter.

1.1 Method of EULER and CAUCHY

In the following we repeat the essentials of the procedure used by EULER (for fluids) and by CAUCHY (1823, 1828) (for the so-called CAUCHY continuum). It is based on a series of axioms or assumptions, which we will number as A1, A2 etc.

(A1) The starting point is the Principle of Cuts after which we can cut every body out of the universe, and substitute the mechanical influence of the outer world by (solely) applying forces or enforced displacements.

(A2) Such forces induce torques in the usual way, which are linked to a turning point. If we change this turning point, we have to add moments after VARIGNON’s principle.

(A3) In continuum mechanics, such forces are understood as resulting from distributed forces acting either on the interior of the body as body forces like, e.g., gravity, or on the surface as contact forces such as the air pressure. Line or point forces have not been included by CAUCHY.

(A4) Both types of forces are understood as continuously distributed, so that force densities exist. The density of the body force per unit mass is the specific body force field \mathbf{b}, that of the contact force is the traction field \mathbf{t}, so that the resulting force acting on the body can be determined by

$$\mathbf{f} = \int_{\mathcal{B}_i} \mathbf{b} \, dm + \int_{\partial \mathcal{B}_i} \mathbf{t} \, dA$$

and the resulting torque

$$\mathbf{m}_O = \int_{\mathcal{B}_i} \mathbf{x}_O \times \mathbf{b} \, dm + \int_{\partial \mathcal{B}_i} \mathbf{x}_O \times \mathbf{t} \, dA$$
with \(\mathbf{x}_O \) being the position vector with respect to some turning point \(O \) in space. While the specific body force \(\mathbf{b} \) is assumed to be given by a gravitational law or the like, the surface tractions are induced by dynamic (or \textsc{neumann}) boundary conditions, or as reactions to \textsc{dirichlet} boundary conditions.

Further, it is assumed that two balance laws hold, which we call \textsc{euler’s laws of motion}, namely

- **(A5)** the balance of linear momentum

\[
(1.3) \quad \mathbf{p}^* = \mathbf{f}
\]

with the linear momentum

\[
(1.4) \quad \mathbf{p} := \int_{\mathcal{B}_t} \mathbf{v} \, dm
\]

- **(A6)** and the balance of angular momentum

\[
(1.5) \quad d_{O}^* = \mathbf{m}_O
\]

with the angular momentum

\[
(1.6) \quad d_{O} = \int_{\mathcal{B}_t} \mathbf{x}_O \times \mathbf{v} \, dm
\]

with respect to some fixed point \(O \).

The two balance laws can be brought into the form using (1.1) and (1.2)

\[
(1.7) \quad \int_{\mathcal{B}_t} \mathbf{a} \, dm = \int_{\mathcal{B}_t} \mathbf{b} \, dm + \int_{\partial \mathcal{B}_t} \mathbf{t} \, dA
\]

\[
(1.8) \quad \int_{\mathcal{B}_t} \mathbf{x}_O \times \mathbf{a} \, dm = \int_{\mathcal{B}_t} \mathbf{x}_O \times \mathbf{b} \, dm + \int_{\partial \mathcal{B}_t} \mathbf{x}_O \times \mathbf{t} \, dA.
\]

The (dynamical) admissibility of a motion of a body is then understood as the validity of these two laws.

Axiom 1.1 (\textsc{euler’s laws of motion})

A motion of a body is admissible if and only if the balance of linear momentum (1.7) and the balance of angular momentum (1.8) hold during the motion.

We will need one further assumption which seems to be rather natural, but is by no means trivial.

Axiom 1.2 (Compatibility Assumption)

Let \(\chi \) be an admissible motion of a body \(\mathcal{B}_0 \), and \(\mathcal{B}_1 \subset \mathcal{B}_0 \) a subbody of \(\mathcal{B}_0 \). Then the restriction of \(\chi \) to \(\mathcal{B}_1 \) is an admissible motion of \(\mathcal{B}_1 \).
As a consequence, the inverse statement is then also true.

Let \(\chi \) be a motion of a body \(B_0 \), and \(B_1 \subset B_0 \) a subbody of \(B_0 \). If the restriction of \(\chi \) to \(B_1 \) is not an admissible motion of \(B_1 \), then \(\chi \) cannot be admissible for \(B_0 \).

The next step of CAUCHY (1823, 1828) for the introduction of stresses is the famous tetrahedron argument, which can be found in every book on continuum mechanics. It uses the balance of linear momentum (1.7) and continuity under some limit processes and the fundamental assumption (A7) that the tractions depend on the particular surface for different cuts only through their orientations. Then CAUCHY could demonstrate that the traction vector \(t \) is a linear function of the normal \(n \) to the tangent plane in that particular point (Theorem of CAUCHY), which gives rise to the introduction of CAUCHY’s stress tensor \(T \), thus

\[
(1.9) \quad t(x, t, n) = T(x, t) \cdot n(x, t) .
\]

By this equation, the tractions on a surface point are related to the stress tensor. In the case of dynamic or NEUMANN boundary conditions, the tractions are prescribed on the boundary

\[
(1.10) \quad t_{\text{pres}}(x, t) = T(x, t) \cdot n .
\]

If we determine by (1.9) the resulting contact force, we can apply the divergence theorem to transform the surface integral into a volume integral

\[
(1.11) \quad \int_{\partial B_{\mathcal{t}}} t \, dA = \int_{\partial B_{\mathcal{t}}} T \cdot n \, dA = \int_{B_{\mathcal{t}}} \text{div} \, T \, dV .
\]

Inserting this into the balance of linear momentum (1.7) gives

\[
(1.12) \quad \int_{B_{\mathcal{t}}} \text{div} \, T \, dV + \int_{B_{\mathcal{t}}} b \, dm = \int_{B_{\mathcal{t}}} a \, dm .
\]

and into the balance of angular momentum (1.8)

\[
(1.13) \quad \int_{B_{\mathcal{t}}} (x_O \times \text{div} \, T \, dV + 2 \text{axi} \, T) \, dV + \int_{B_{\mathcal{t}}} x_O \times b \, dm = \int_{B_{\mathcal{t}}} x_O \times a \, dm
\]

being valid for the body if the motion is admissible. Here we used the integral transformation

\[
\int_{\partial B_{\mathcal{t}}} x_O \times T \cdot n \, dA = \int_{B_{\mathcal{t}}} (x_O \times T) \cdot \nabla \, dV = \int_{B_{\mathcal{t}}} [x_O \times (T \cdot \nabla) + 2 \text{axi} \, T] \, dV .
\]

After the above Compatibility Axiom 1.2, the same motion shall also be admissible for each subbody. This would be fulfilled if we take the restrictions of the fields \(T \) and \(b \) to the subbody (for \(a \) it follows already from the definition (0.47)). So in what follows we will automatically use these restrictions without further mentioning.

Then for smooth arguments we obtain the local balance of linear momentum or 1st law of CAUCHY (1823)

\[
(1.14) \quad \text{div} \, T + \rho \, b = \rho \, a .
\]
By use of the two (sic!) equations of motion, one can show the symmetry of the stress tensor, sometimes labelled BOLTZMANN’s axiom or 2nd law of CAUCHY

\[T = T^T. \] (1.15)

So we can state the following

Theorem 1.1 (CAUCHY’s laws)

A motion of a body is admissible if and only if CAUCHY’s laws (1.14) and (1.15) hold everywhere in the body during the motion.

Later in the history of mechanics, the assumption A1 has been extended by also introducing distributed torques which do not result from forces (polar media). In such a case, the stress tensor is not symmetric and the balance of angular momentum takes the form of a typical balance equation. Such media are called constrained COSSERAT media or KOITER (1964) media. If one, moreover, considers rotations as additional kinematical degrees of freedom other than \(\text{curl } \mathbf{v} \), one obtains a COSSERAT (1909) medium. In what follows, however, we will restrict our concern to non-polar media.

Let \(K \) be an integer, the value of which will be specified later. We will call any \(K \)-times differentiable vector field (test function) on the body in the current placement \(\mathcal{B} \), a virtual velocity field. All such fields form the space of virtual velocities denoted by \(\delta V \). It always contains the current (real) velocity field \(\mathbf{v} \) as a distinguished member. It also contains the set of constant vector fields, which can be identified with the three-dimensional vector space of the EUCLIDEan shifters \(V^3 \) in a natural way.

In analogy to the velocity field, we will use the following notations for the virtual fields:

\[
\begin{align*}
\delta \mathbf{L} &:= \text{grad } \delta \mathbf{v} \\
\delta \mathbf{W} &:= \frac{1}{2} (\text{grad } \delta \mathbf{v} - \text{grad}^T \delta \mathbf{v}) = \text{skw } \delta \mathbf{L} \\
\delta \mathbf{D} &:= \frac{1}{2} (\text{grad } \delta \mathbf{v} + \text{grad}^T \delta \mathbf{v}) = \text{sym } \delta \mathbf{L} \\
\delta \mathbf{\omega} &:= \text{axi}(\delta \mathbf{W}) = \text{axi}(\delta \mathbf{L}).
\end{align*}
\]

If we multiply (1.14) by an arbitrary virtual velocity field \(\delta \mathbf{v} \in \delta \mathcal{V} \)

\[
\text{div } \mathbf{T} \cdot \delta \mathbf{v} + \rho (\mathbf{b} - \mathbf{a}) \cdot \delta \mathbf{v} = 0
\]

and add (or subtract) the term

\[
\mathbf{T} \cdot \delta \mathbf{W} = 2 \text{axi } \mathbf{T} \cdot \delta \mathbf{\omega}
\]

then the result is obviously zero if (1.14) and (1.15) hold. We now integrate over the volume and obtain the following version of the PVP.

Theorem 1.2 (volumetric form of the principle of virtual power)

A motion of a body is admissible if and only if

\[
\int_{\mathcal{B}} \left[\text{div } \mathbf{T} \cdot \delta \mathbf{v} + \rho (\mathbf{b} - \mathbf{a}) \cdot \delta \mathbf{v} + \mathbf{T} \cdot \delta \mathbf{W} \right] dV = 0
\]

holds during the motion for arbitrary fields \(\delta \mathbf{v} \in \delta \mathcal{V} \).
Proof. We choose for the virtual velocity field an arbitrary constant field \(\delta v_0 \in \delta V \), so that the gradient of it is zero everywhere. Then the above equations gives

\[
(1.18) \quad \{ \int_{\mathcal{B}_t} [\text{div}(T) + \rho (b - a)] dV \} \cdot \delta v_0 = 0
\]

and by the arbitrariness of \(\delta v_0 \)

\[
(1.19) \quad \int_{\mathcal{B}_t} [\text{div}(T) + \rho (b - a)] dV = 0.
\]

This must hold also for every subbody after the Compatibility Axiom 1.2, so that the integrand must be zero everywhere in the volume, which gives (1.14).

As a second choice for \(\delta v \in \delta V \) we choose a rotational field \(\delta \omega \times x \in \delta V \) with an arbitrary constant vector \(\delta \omega \) and the position vector \(x \) with respect to some arbitrary point of reference. Then the skew tensor field \(\delta W \) is arbitrary but constant

\[
(1.20) \quad \int_{\mathcal{B}_t} T \cdot \delta W dV = 0 = \int_{\mathcal{B}_t} 2 axi \cdot \delta \omega dV \quad \text{with} \quad \delta \omega := axi(\delta W).
\]

By a similar reasoning as before we can conclude that the integrand must be zero for any skew \(\delta W \) so that the stress tensor must be symmetric everywhere in the body, which gives (1.15). So we have that CAUCHY’s laws hold everywhere in the body. On the other hand, the validity of these laws gives immediately the equation in the theorem, \textit{q.e.d.}

We apply the divergence theorem and the product rule to the equation (1.17) from the above theorem

\[
0 = \int_{\mathcal{B}_t} [\text{div} T \cdot \delta v + \rho (b - a) \cdot \delta v + T \cdot \delta W] dV
\]

\[
= \int_{\mathcal{B}_t} [\text{div} T \cdot \delta v + \rho (b - a) \cdot \delta v + T \cdot \delta L - T \cdot \delta D] dV
\]

\[
(1.21) \quad = \int_{\mathcal{B}_t} [\rho (b - a) \cdot \delta v - T \cdot \delta D] dV + \int_{\partial \mathcal{B}_t} T \cdot \delta v dA
\]

since the divergence theorem applies as

\[
(1.22) \quad \int_{\mathcal{B}_t} T \cdot \text{grad} \delta v dV = \int_{\partial \mathcal{B}_t} (T \cdot n) \cdot \delta v dA - \int_{\mathcal{B}_t} \text{div} T \cdot \delta v dm.
\]

This gives the
Theorem 1.3 (global PVP)
A motion of a body is admissible if and only if

\[
\int_{\mathcal{B}_i} b \cdot \delta v \, dm + \int_{\partial \mathcal{B}_i} t \cdot \delta v \, dA = \int_{\mathcal{B}_i} a \cdot \delta v \, dm + \int_{\mathcal{B}_i} T \cdot \delta D \, dV
\]

holds during the motion for all virtual velocity fields \(\delta v \in \delta V \).

If we insert in (1.23) the (real) velocity field \(v \) for \(\delta v \), then we obtain the mechanical work balance, which is only a necessary condition for the motion to be admissible.

Theorem 1.4 (global work balance)
For every admissible motion of a body, the work balance

\[
\Pi_e = \Pi_i + K^*
\]

holds during the motion with the power of the forces

\[
\Pi_e := \int_{\mathcal{B}_i} b \cdot v \, dm + \int_{\partial \mathcal{B}_i} t \cdot v \, dA,
\]
the stress power

\[
\Pi_i := \int_{\mathcal{B}_i} T \cdot D \, dV
\]
and the kinetic energy

\[
K := \frac{1}{2} \int_{\mathcal{B}_i} v \cdot v \, dm.
\]
Changes of Observers

Since most of our variables, both kinematical and dynamic ones, depend on observers or frames of reference, we have to consider changes of observers. Such changes contain a temporal and a spatial transformation. The temporal transformation is just a time shift of the reference point of time. Since we mainly deal here with differences of time, this transformation does not matter and will not be further mentioned.

The spatial transformation induced by a change of observer, however, does matter. It is given by the EUCLIDEAN transformation which transforms the position vector $x(P, t)$ of a particle or a material point P at a time t for one observer into that of some other observer indicated by an upper asterisk, (not to be confused with the RAYLEIGH product (0.4))

$$x^*(P, t) = Q(t) \cdot x(P, t) + c(t)$$

by a time-dependent vector $c(t) \in \mathbb{V}^3$ and a time-dependent orthogonal tensor $Q(t) \in \text{Orth}$, both of which are determined solely by the two observers, but are independent of the motion.

In the case of $Q(t)$ being improper, i.e., with negative determinant, the EUCLIDEAN transformation would also change the orientation. Since the orientation of the EUCLIDEAN space is not an intrinsic property but rather a convention or a definition, we cannot assume that all observers prefer the same orientation. This is in contrast to rigid body modifications of motions, where the same form as in (1.28) is valid, but only proper orthogonal tensors make sense. This distinction will have consequences for the invariance postulates on material laws.

The EUCLIDEAN transformation forms a group under composition, and determines the transformations of all kinematical variables as group actions.

If we transform vector or tensor fields, we have to take into account that the dependence on the locus expressed by x_0 in the LAGRANGEan representation is invariant under observer changes, while the position vector x in the EULERean description has to be transformed according to (1.28). When we will furtheron compare field variables in the EULERean description, it is without further mentioning understood that such a transformation of the spatial variables for the different observer is made.

We will call a tensorial variable T of any order objective if it transforms like

$$T^* = Q \cdot T = Q \cdot T \cdot Q^T$$

under all changes of observer with an orthogonal tensor Q, and invariant if

$$T^* = T.$$

For scalars (as zeroth-order tensors) both definitions coincide.

Nabla transforms after the chain rule as

$$\nabla = \nabla^* \cdot Q \quad \Leftrightarrow \quad \nabla^* = \nabla \cdot Q^T$$

3 This issue has been corrected here compared to the previous editions of this Compendium.
and the gradient of some field as

\[(1.32) \quad \nabla (\bullet) = \nabla^* (\bullet) \cdot Q \quad \Leftrightarrow \quad \nabla^* (\bullet) = \nabla (\bullet) \cdot Q^T.\]

The action of the EUCLIDEan transformation on the motion \(\chi\) of the body during a closed time interval is

\[(1.33) \quad \chi^* (x_0, t) = Q(t) \cdot \chi (x_0, t) + c(t).\]

The transformation of the velocity field results as

\[(1.34) \quad v^* = Q \cdot \chi (x_0, t)^* + Q^* \cdot \chi (x_0, t) + c^*\]
\[= Q \cdot v + Q^* \cdot Q^T \cdot (x^* - c) + c^*\]
\[= Q \cdot v + \omega \times (x^* - c) + c^*\]

where the angular velocity \(\omega\) is the axial vector of the skew tensor \(Q^* \cdot Q^T\)

\[(1.35) \quad \omega := axi(Q^* \cdot Q^T),\]

both of which depend on the time, but not on the locus. The terms \(\omega \times (x^* - c) + c^*\) are sometimes called \textit{distributors}. They also result in an identical form for the velocity field of a rigid body motion.

The acceleration transforms as

\[(1.36) \quad a^* = Q \cdot a + c^* + \omega \times (x^* - c) + \omega \times [(x^* - c) \times \omega] + 2 \omega \times (v^* - c^*)\]

as a sum of the relative acceleration, the translational acceleration, the angular acceleration, the centripetal acceleration, and the CORIOLIS acceleration, respectively.

We also find that neither \(L\) nor \(W\) are objective

\[(1.37) \quad L^* = Q^* \cdot L + Q^* \cdot Q^T\]
\[(1.38) \quad W^* = Q^* \cdot W + Q^* \cdot Q^T\]

because of the additional skew parts \(Q^* \cdot Q^T\), while the symmetric part \(D\) is objective

\[(1.39) \quad D^* = Q^* \cdot D,\]

and so are all higher velocity gradients from the second one upwards.

The question arises about the transformations of the dynamic quantities. Usually, one assumes \textbf{(A8)} objectivity of not only the resulting force but also for each part of it:

\[(1.40) \quad f^* = Q \cdot f\]
\[b^* = Q \cdot b\]
\[t^* = Q \cdot t.\]

Then we can show that the power of the forces is objective (and invariant) \(\Pi_e^* = \Pi_e\) as well as the stress power \(\Pi_i^* = \Pi_i\), and so is the stress tensor as already denoted in (1.29).

EULER’s laws of motion have a kinematical side and a dynamic side. The dynamic side is objective after A8, while the kinematical side is not objective due to the transformations of the acceleration (1.36). Consequently, these fundamental equations do not hold for all observers,
but only for those (inertial observers) for which the acceleration transforms like an objective vector (ω ≡ 0 and c ≡ 0). Such changes of observers are called GALILEIan transformations.

This situation is, of course, not satisfying. One can remove this shortcoming by relaxing A8 by assuming that the generalized body forces $b_{\text{gen}} := b - a$ are objective (A8'), which contain the specific body force and the inertial force. This would mean that the fields t and T and b_{gen} are objective, but not b. If we do this, both sides of EULER’s equations are objective, and they hold for every observer. So by sacrificing the objectivity of forces and torques in our concept, we gain the freedom of choice of the observer, since we are no longer restricted to inertial observers. Hence, all the following statements hold for arbitrary observers, whether inertial or not.

Under this assumption A8 we can prove the following

Theorem 1.5 (principle of invariance of the power)

A motion of a body is admissible if and only if

\[
\int_{\mathcal{B}_t} b_{\text{gen}} \cdot v \, dm + \int_{\partial \mathcal{B}_t} \mathbf{t} \cdot v \, dA - \int_{\mathcal{B}_t} T \cdot D \, dV
\]

is invariant under all changes of observer during the motion.

Proof. We first show that the invariance of (1.41) leads to the balance of linear momentum (1.7) and of angular momentum (1.8). For that purpose, we determine (1.41) for some other observer using A8' and the transformation of the velocities (1.34)

\[
\int_{\mathcal{B}_t} (Q \cdot b_{\text{gen}}) \cdot [Q \cdot v + \omega \times (x^* - c) + c^*] \, dm
\]

\[
+ \int_{\partial \mathcal{B}_t} (Q \cdot \mathbf{t}) \cdot [Q \cdot v + \omega \times (x^* - c) + c^*] \, dA
\]

\[- \int_{\mathcal{B}_t} (Q \cdot T \cdot Q^T) \cdot \text{sym grad}^* [Q \cdot v + \omega \times (x^* - c) + c^*] \, dV.
\]

The difference with (1.41) with respect to the other observer is

\[
\int_{\mathcal{B}_t} (Q \cdot b_{\text{gen}}) \cdot [\omega \times (x^* - c) + c^*] \, dm + \int_{\partial \mathcal{B}_t} (Q \cdot \mathbf{t}) \cdot [\omega \times (x^* - c) + c^*] \, dA
\]

4 CAUCHY (1823) calls it force accélératrice.

5 Of course, this is not the only way to proceed. One could also introduce the concept of an inertial observer, and would then obtain the objectivity of forces only with respect to GALILEIan transformations.
\[- \int_{\mathcal{B}_t} (Q \cdot T \cdot Q^T) \cdot \text{sym grad}^* [\omega \times (\mathbf{x}^* - \mathbf{c}) + \mathbf{c}^*] \, dV.\]

This must be zero, if (1.41) is invariant for arbitrary observers and, hence, arbitrary vectors \(\omega\), \(\mathbf{c}\), and \(\mathbf{c}^*\). For \(\omega \equiv \mathbf{o}\) and \(Q \equiv I\) and a constant (in space) arbitrary vector \(\mathbf{c}^*\) we obtain necessarily

\begin{equation}
\int_{\mathcal{B}_t} \mathbf{b}_{\text{gen}} \, dm + \int_{\partial \mathcal{B}_t} \mathbf{t} \, dA = \mathbf{0}
\end{equation}

i.e., the balance of linear momentum (1.7). For \(\mathbf{c} \equiv \mathbf{o}\), \(\mathbf{c}^* \equiv \mathbf{o}\) and \(Q \equiv I\), the rest is

\begin{equation}
0 = \int_{\mathcal{B}_t} \mathbf{b}_{\text{gen}} \cdot \omega \times \mathbf{x}^* \, dm + \int_{\partial \mathcal{B}_t} \mathbf{t} \cdot \omega \times \mathbf{x}^* \, dA - \int_{\mathcal{B}_t} (T \cdot \text{sym grad}^* (\omega \times \mathbf{x}^*)) \, dV
\end{equation}

\[
= \omega \cdot [\int_{\mathcal{B}_t} \mathbf{x}^* \times \mathbf{b}_{\text{gen}} \, dm + \int_{\partial \mathcal{B}_t} \mathbf{x}^* \times \mathbf{t} \, dA]
\]

since

\[
\text{grad}^* (\omega \times \mathbf{x}^*) = \omega \times \mathbf{x}^* \otimes \nabla^* = \omega \times I
\]

which is skew. (1.54) holds for arbitrary \(\omega\) if and only if the balance of angular momentum (1.8) is fulfilled. The other direction of the proof is straightforward; \(q.e.d.\).

By the same rationale, we can reformulate the volumetric form of the principle of virtual power.

Theorem 1.6 (principle of invariance of global power)

A motion of a body is admissible if and only if

\begin{equation}
\int_{\mathcal{B}_t} [(\text{div } T + \rho \mathbf{b}_{\text{gen}}) \cdot \mathbf{v} + T \cdot \mathbf{W}] \, dV
\end{equation}

is invariant for the body and all its subbodies under all changes of observer during the motion.

Instead of using the skew part of the velocity gradient \(W\) in the last term, we can also use the complete gradient \(L\) since both transform in the same way after (1.38).

Note that the integral (1.46) in the previous theorem is not necessarily zero, but only under rigid body motions, i.e., under distributors.

The same principle holds also for the local form of the power.

Theorem 1.7 (principle of invariance of local power)

A motion of a body is admissible if and only if the power

\begin{equation}
(\text{div } T + \rho \mathbf{b}_{\text{gen}}) \cdot \mathbf{v} + T \cdot \mathbf{W}
\end{equation}

is everywhere invariant under all changes of observer during the motion.
We also see that both principles can be extended to the virtual power by the declaration that the virtual velocities transform like velocities (1.34) under change of observer

\begin{equation}
\delta v^* = Q \cdot \delta v + Q^* \cdot Q^T \cdot (x^* - c) + c^*
\end{equation}

or inversely

\begin{equation}
\delta v = Q^T \cdot (\delta v^* - Q^* \cdot Q^T \cdot (x^* - c))
\end{equation}

with \(\omega \) being the axial vector of the skew tensor \(Q^* \cdot Q^T \).

This transformation obviously forms a bijection between the spaces \(\delta V \) and \(\delta V^* \) of the virtual velocities for different observers. If \(\delta v^* \) is \(K \)-times differentiable, then so is \(\delta v^* \), and vice versa.

We can then extend the Principle of Invariance of the Power to all virtual velocity fields.

\textbf{Theorem 1.8} (global form of the principle of invariance of the virtual power)

A motion of a body is admissible if and only if

\begin{equation}
\int_{\partial B_i} b_{gen} \cdot \delta v \, dm + \int_{B_i} t \cdot \delta v \, dA - \int_{B_i} T \cdot \delta D \, dV
\end{equation}

is invariant under changes of observer during the motion for all \(\delta v \in \delta V \).

The same extension applies to the principle of invariance of the global power (1.46).

\textbf{Theorem 1.9} (volumetric form of the principle of invariance of the virtual power)

A motion of a body is admissible if and only if the integral

\begin{equation}
\int_{B_i} \left[(\text{div} \, T + \rho b_{gen}) \cdot \delta v + T \cdot \delta W \right] \, dV
\end{equation}

is invariant under changes of observer for the body during the motion for all \(\delta v \in \delta V \).

For the last term \(T \cdot \delta W \) in the foregoing Theorem one could also use \(T \cdot \delta L \) since only the skew part of the deformation gradient can be freely varied by observer changes after (1.38).
1.2 Mechanics based on the Principle of Virtual Power

This chapter is partly identical with

In the previous chapter we have seen that CAUCHY´s method is based on a series of assumptions and leads to a rather specific theory. In contrast, we will show in this chapter that a procedure based on an invariance requirement of the power functional is more elegant and leads to a broader theory which might also include higher gradients.

The principle of virtual power (PVP) has gained much popularity because of its versatility to the inclusion of non-classical effects. Already the COSSERATs (1909) used it as the starting point for their inclusion of additional rotations\(^6\), and HELLINGER (1914, p. 622) for the inclusion of higher gradients\(^7\).

In GREEN/ RIVLIN (1964a) the equations of motion for a classical continuum have been derived by a similar invariance requirement, however, not of the virtual power, but rather of the thermodynamical energy balance (first law of thermodynamics).

PODIO-GUIDUGLI (2009) enlarged the principle of virtual power to include the thermodynamical fields and, thus, producing the entropy balance.

Our approach here has been widely inspired by the seminal papers of GERMAIN (1972, 1973a and b), who based different non-classical continuum theories on the principle of virtual power. However, certain differences between his and the present approach should be mentioned.

(i) GERMAIN´s starting point is the principle of virtual power (PVP), while that of the present theory is the power itself. As the attribute virtual already indicates, is the PVP in a certain sense unreal, while the power balance applies only to real processes. It is the aim of the present theory to reflect this fact and to show what the real kernel of the PVP essentially is.

(ii) GERMAIN distinguishes from the outset between internal and external contributions to the power. This distinction is not made at this stage in the present text, since the forms of both types of contributions are identical.

\(^6\) MAUGIN (2016) writes: "This is the first manifestation of an application of the invariance under rigid-body displacements written in infinitesimal form ...".

\(^7\) See DELL´ISOLA/ DELLA CORTE/ ESPOSITO/ RUSSO (2016) for the history of this principle.
(iii) GERMAIN introduces from the outset volumetric and surface parts of the (virtual) power, while we start exclusively with volumetric parts, which can be later transformed into those acting on the surface of the body.

In contrast to the preceding chapter, we do not take here forces as primitive concepts and the assumptions A1 - A8 of the method used by EULER and CAUCHY. Instead we start with the (total) power of a body as a primitive concept. All kinematical concepts remain the same as before, but all dynamic concepts will be introduced completely anew. The Compatibility Axiom 1.2 is also assumed further on. In addition, we will postulate two more axioms.

Axiom 1.3 (principle of determinism)

For each body there exists a power functional Π with respect to some observer that assigns to any motion of the body the (total) power $\Pi(\chi)$ that the body currently (i.e., at the end of this motion) produces. It is zero, whenever the current velocity field is zero for all points of the body.

In modern continuum mechanics it is usually assumed that variables like the stresses depend on the motion of the body in the past until the presence. Such dependencies on processes are called (process) functionals. In the older literature\(^8\) often (semi-infinite) histories are considered, which led however to some conceptual problems\(^9\).

In mathematics, a functional is in most cases understood as a mapping from (infinite dimensional) function spaces into finite dimensional spaces. For the stress power the label functional is substantiated in two ways. Firstly, since it is an integral over fields defined on the body or its surface, as we will see in the sequel. And secondly, since it contains variables like the stresses which can be determined by a process functional.

The integral (1.46) from Theorem 1.6 would be one candidate for such a power with all dynamic variables being functionals of the motion. But there are other candidates as we will see later.

Note that both the motion and the power functional will in general depend on the observer. For the motion this dependence is specified by the EUCLIDean transformation (1.33). For the power it will be done by the following Objectivity Axiom.

Axiom 1.4 (principle of objectivity of the power)

A motion of the body is admissible if and only if the power is objective under all changes of observer \(^{10}\)

\[\Pi^*(\chi^*) = \Pi(\chi) \]

at all times during the motion.

Such an axiom has already been used by the COSSERATs (1909) and later by NOLL (1959, 1963)\(^{10}\) to derive the balance of linear and angular momentum. However, NOLL’s starting point is different from ours. He starts with an objective force as a primitive concept and defines the power, while we do it here *vice versa.*

\(^8\) see, e.g., TRUESDELL/ NOLL (1965)

\(^9\) see BERTRAM (2014) on different approaches to material theory

\(^{10}\) see also TRUESDELL/ TOUPIN (1960, § 232), TOUPIN (1962), POLIZZOTTO (2013)
We are not assuming that the power functional $\Pi(\chi)$ for a given body was unique. But we do assume that every choice of it gives us the same answer to the question whether some motion is admissible or not after Axiom 1.4.

One is tempted to state that the power is linear in the current velocity field \textit{(i.e.,} at the end of the motion), and often reads such a statement. However, because of regularity, the velocity field at the end of some motion is determined by the motion. So we cannot vary the velocity field without varying the motion, and such a statement makes no sense.

The remedy to overcome this problem is to introduce a \textit{virtual power functional} as a continuous and linear extension of the power functional.

To make this more precise, we first have to endow the space of virtual velocities δV with a linear and a topological structure, in order to give properties of functions like linearity and continuity a meaning.

The linear operations of such fields are introduced point-wise, as usual.

The topological structure, however, is non-trivial, since we work in function spaces (with infinite dimension). We will assume further on that all virtual velocity fields are K-times piecewise differentiable in space for some $K \geq 0$, which shall be specified later. A topological structure on δV is introduced by the \textbf{SOBOLEV ($2,K$)-norm}

\begin{equation}
|\delta v|^K := \sqrt{\int B [|\delta v(x)|^2 + |\nabla \delta v(x)|^2 + ... + |\nabla^K \delta v(x)|^2] \, dV}
\end{equation}

for all $\delta v \in \delta V$. Here ∇^K means the K-fold EULERian gradient of the field δv

\begin{equation}
\nabla^K \delta v := \delta v \otimes \nabla = \delta v \otimes \nabla \otimes \nabla (K\text{-times}).
\end{equation}

Note that the norm on the left-hand side of (1.52) is a norm on a vector field, \textit{i.e.,} in a functional space, while the norms on the right-hand side are the usual \textbf{FROBENIUS norms} of finite dimensional vector and tensor spaces evaluated point-wise.

This norm makes a topological vector space out of δV, which is contained in the \textbf{SOBOLEV space} $H^{2,K}$.

One might argue that the terms in the above norm have all different dimensions. This can be cured by using appropriate factors for every term. However, such factors do not alter the induced topology and are, hence, omitted.

The current velocity field shall always be contained in δV. This assumption restricts the regularity of the velocity fields in a way that is not appropriate for certain purposes. Shock waves, shear bands, and other localizations will require weaker regularities in order to also allow for non-smooth fields with singularities. For the present context, however, we will not include such behaviour for the sake of simplicity and clearness.

The action of the group of \textbf{EUCLIDean transformations} on the space of virtual velocities (1.48) preserves the topology of the spaces δV, \textit{i.e.,} if some δv is continuous, then its image under (1.48) δv^* is also continuous, and the same holds for the differentiability.
We are now able to introduce the *virtual power* as a continuous extension of the *power* being linear in the virtual velocities.

Definition 1.1 (virtual power)

For a given motion \(\chi \) of a body with respect to some observer, the **virtual power functional** is a functional \(\delta \Pi(\chi, \delta v) \) of the motion and of the virtual velocity field such that for each motion

\[
\delta \Pi(\chi, \delta v) : \delta V \rightarrow \mathbb{R}
\]

(P1) is continuous and linear

(P2) and extends the power functional \(\Pi \), *i.e.*,

\[
\delta \Pi(\chi, v) = \Pi(\chi)
\]

for the current velocity field \(v \)

(P3) it transforms like the power functional, *i.e.*, for all observers we have

\[
\delta \Pi^*(\chi^*, \delta v^*) - \delta \Pi(\chi, \delta v) = \Pi^*(\chi^*) - \Pi(\chi)
\]

if \(\chi \) is admissible and transformed after (1.33) and \(\delta v \) are transformed like \(v \) after (1.48).

Such an extension is by no means unique. This non-uniqueness will influence all the derived concepts like forces, stresses, etc., but will have no influence on the distinction between admissible and non-admissible motions, as we will see later.

Using (1.48) we can bring (1.55) into the form

\[
\delta \Pi^*(\chi^*, \delta v^*) = \delta \Pi(\chi, Q^T \cdot \delta v^*) + \Pi^*(\chi^*) - \Pi(\chi) - \delta \Pi(\chi, Q^T \cdot \delta v^*) + \Pi(\chi) - \delta \Pi(\chi, Q^T \cdot (x^* - c) - c^*)
\]

or inversely

\[
\delta \Pi^*(\chi^*, Q \cdot \delta v + Q^* \cdot Q^T \cdot (x^* - c) + c^* - \delta \Pi(\chi, \delta v) = \Pi^*(\chi^*) - \Pi(\chi)
\]

and by the linearity of the virtual power functional (P1)

\[
\delta \Pi^*(\chi^*, Q \cdot \delta v) - \delta \Pi(\chi, \delta v)
\]

\[
= \Pi^*(\chi^*) - \Pi(\chi) - \delta \Pi^*(\chi^*, Q^* \cdot Q^T \cdot (x^* - c)) - \delta \Pi^*(\chi^*, c^*)
\]

for all \(\delta v \in \delta V \).

Regarding the dependencies upon \(\delta v \), the right-hand side of this equation is constant. The only linear function that equals a constant, is the zero function. Thus,

\[
\delta \Pi^*(\chi^*, Q \cdot \delta v) = \delta \Pi(\chi, \delta v)
\]

for all \(\delta v \in \delta V \).

The remaining parts of equation (1.58) give

\[
\Pi^*(\chi^*) - \Pi(\chi) = \delta \Pi^*(\chi^*, Q^* \cdot Q^T \cdot (x^* - c)) + \delta \Pi^*(\chi^*, c^*).
\]
Forces and Torques

By the linearity of the virtual power, there exist after the Riesz representation theorem (here applied to a finite-dimensional vector space with inner product) two motion- and time-dependent vectors (not vector fields) $f \in \mathcal{V}$ and $m_O \in \mathcal{V}$ for every observer which give the virtual power for an arbitrary spatially constant translational field $\delta v \equiv \delta v_o \in \delta \mathcal{V}$ (here identified with \mathcal{V})

$$\delta \Pi(\chi, \delta v_o) = f \cdot \delta v_o$$

and for an arbitrary rotational field $\delta v \equiv Q^* \cdot Q^T \cdot x = \delta \omega \times x \in \delta \mathcal{V}$

$$\delta \Pi(\chi, \delta \omega \times x) = m_O \cdot \delta \omega$$

such that the virtual power for a virtual velocity field resulting from a rigid body motion is

$$\delta \Pi(\chi, \delta \omega \times (x - c)) + \delta \Pi(\chi, c^*) = f \cdot \delta v_o + m_O \cdot \delta \omega$$

with the relative virtual velocity of the reference point O (which need not be a material point)

$$\delta v_o = c^* - \delta \omega \times c = c^* - Q^* \cdot Q^T \cdot c.$$

We will call the vector f the (resultant) generalized force and the vector m_O the (resultant) generalized torque of the body induced by the virtual power functional $\delta \Pi$. These generalized forces and torques also contain inertial forces. If we subtract the inertial forces, i.e., negative momenta rates, we obtain the (resultant) force

$$f := f + p^* \in \mathcal{V}$$

and analogously the (resultant) torque with respect to O

$$m_O := m_O + d_O^* \in \mathcal{V}$$

with the linear momentum (1.4) and the angular of momentum (1.6) as before.

As we introduced the forces and moments by definitions and not as primitive concepts, we can derive their properties without need of further assumptions.

The generalized forces and moments are observer-dependent functionals of the motion, like the power itself. The observer-dependence of the generalized forces and torques will be clarified by the next theorem.

11 We identify the set of all constant fields on the body with the three-dimensional Euclidean vector space \mathcal{V}.

12 Some authors call the apparent forces, while HAMEL prefers the name verlorene Kräfte (lost forces).

13 For the introduction of forces and stresses see also SEGEV (1986) and SEGEV/ DE BOTTON (1991).
Theorem 1.10 (objectivity of forces and torques)

The generalized force and the generalized moment are objective vectors

\[f^* = Q \cdot f \quad \text{and} \quad m_{O'}^* = Q \cdot m_O \]

Proof. We evaluate (1.56) for the field \(\delta v = a \times x + b \) with two arbitrary vectors \(a \) and \(b \)

\[\Pi^* (\chi^*) - \Pi (\chi) = \delta \Pi^* (\chi^*, \delta v^*) - \delta \Pi (\chi, \delta v) \]

with (1.34)

\[= \delta \Pi^* (\chi^*, Q \cdot (a \times x + b) + \omega \times (x^* - c) + \chi^* - \chi) - \delta \Pi (\chi, a \times x + b) \]

\[= \int f^* \cdot (Q \cdot b) + m_{O'}^* \cdot (Q \cdot a) + f^* \cdot c^* + m_{O'}^* \cdot \omega - f \cdot b - m_O \cdot a \]

\[= (Q^T \cdot f^* - f) \cdot b + (Q^T \cdot m_{O'}^* - m_O) \cdot a + f^* \cdot c^* + m_{O'}^* \cdot \omega \]

since

\[Q \cdot (a \times x) = (Q \cdot a) \times (Q \cdot x) = (Q \cdot a) \times x^* \]

with (1.28) after an appropriate choice of the point of reference for the second observer (with \(c = o \)). By the arbitrariness of \(a \) and \(b \) we conclude the objectivity of the two vectors; q.e.d.

After the above definition (1.65), the forces do not depend on a point of reference, while the moments do so (through the position vector). This dependence is specified by the following theorem originally due to VARIGNON.

Theorem 1.11 (VARIGNON’s principle)

The generalized torque depends on the point of reference after

\[m_{O'} = m_O + \vec{O'} \times f \]

with \(\vec{O'} \) being the position vector of the second point of reference with respect to the first.

Proof. We use the equation of the position vectors \(x_O = x_{O'} + \vec{O'} \), so that

\[a \times x_O = a \times x_{O'} + a \times \vec{O'} \]

holds for arbitrary vectors \(a \), and

\[\delta \Pi (\chi, a \times x_O) = m_O \cdot a \]

\[= \delta \Pi (\chi, a \times x_{O'} + a \times \vec{O'}) = f \cdot a \times \vec{O'} + m_O \cdot a \]

\[= \vec{O'} \times f \cdot a + m_{O'} \cdot a = (\vec{O'} \times f + m_{O'}) \cdot a \]

which leads with \(\vec{O'} = -\vec{O''} \) to VARIGNON’s formula; q.e.d.

By the definition of the torques (1.66), VARIGNON’s principle holds analogously for the torques

\[m_{O'} = m_O + \vec{O'} \times f \cdot \]
The next results are direct consequences of Axiom 1.4 and equations (1.60) and (1.63), with which we see that the difference of the power for the two observers vanishes if and only if $f = o$ and $m_O = o$.

Theorem 1.12 (EULER’s laws of motion)

A motion of the body is admissible if and only if the laws of motion

\begin{align}
(1.73) & \quad f &= p^* \\
(1.74) & \quad m_O &= d_O^*
\end{align}

hold for the body for one observer (and hence for all) with respect to one point of reference O (and hence for all) during the motion.

The following statement is a direct consequence of the foregoing theorem.

Theorem 1.13 (global version of PVP)

A motion of the body is dynamically admissible if and only if the balance of virtual power

\begin{equation}
(1.75) \quad f \cdot \delta v_o + m_O \cdot \delta \omega = 0
\end{equation}

holds for the body for all vectors δv_o and $\delta \omega \in \mathcal{V}$ for one observer (and hence for all) during the motion.

(1.75) is not identical with the virtual power functional δII, but only contains its essential parts for the distinction between admissible and non-admissible processes in the sense of Axiom 1.4.

With these laws we are already able to completely describe the dynamics of rigid bodies for assigned forces and moments. For deformable bodies, however, a field formulation of these concepts is needed, which will be given in the next section.
Field Equations

In order to obtain a field formulation of the power functional, we make use of the RIESZ representation theorem of linear continuous functionals on topological vector spaces\(^1\).\(^4\).

Theorem 1.14 (field formulation of the virtual power)

For each observer there exist \(K+1\) time-dependent tensor fields \(\{ T_i \}\) of order \(i = 1, \ldots, K+1\) such that

\[
\delta \Pi(\chi, \delta v) = \int_{\mathcal{B}_t} \left(\sum_{i=1}^{K} T_i \cdot \delta v + \sum_{i=0}^{K} \nabla T_i \cdot \nabla \delta v + \ldots + \nabla^{K+1} T_i \cdot \nabla^{K} \delta v \right) dV \quad \forall \delta v \in \delta \mathcal{V}.
\]

Again, the integral (1.50) written as

\[
\int_{\mathcal{B}_t} \left[(\text{div} \ T_i + \rho b_{\text{gen}}) \cdot \delta v + \nabla T_i \cdot \nabla \delta v \right] dV
\]

would be one candidate for such a representation of the virtual power.

The dynamic variables \(\{ T_1, T_2, \ldots, T_K \}\) are in each material point still functionals of the motion \(\chi\), but do not depend on the virtual velocity. These functionals must be further specified. This task is, however, beyond the scope of the present chapter. The higher order dynamic variables \(\{ T_{K+1}, \ldots, T_{K+F} \}\) are often called hyperstresses.

Since the higher velocity gradients show the right subsymmetries, we can also assume the same subsymmetries for the hyperstresses, like

\[
T_{ik}^{(j)} = T_{ji}^{(j)}
\]

\[
T_{ij}^{(j)} = T_{ji}^{(j)} = T_{ij}^{(j)}
\]

etc. Only the first entry is not involved.

By (1.54) we obtain the same representation for the power

\[
\Pi(\chi) = \int_{\mathcal{B}_t} \left(\sum_{i=1}^{K} T_i \cdot v + \sum_{i=0}^{K} \nabla T_i \cdot \nabla v + \ldots + \nabla^{K+1} T_i \cdot \nabla^{K} v \right) dV.
\]

The question arises whether the fields of the dynamic variables can be restricted to subbodies or not. This question is addressed in the following theorem.

\(^{14}\) see, e.g., ADAMS (1975) p. 48. A similar approach as the present one has been suggested by DELL’ISOLA/ SEPPECHER/ MADEO (2012)
Theorem 1.15 (localization of the power)
Let the power functional be given in the form (1.77)

\[
\Pi(\chi) = \int_{B_0} (T \cdot v + T_{(2)} \cdot \text{grad} v + \ldots + T_{(K+1)} \cdot \text{grad}^K v) \, dV
\]

for a body B_0, and let $B_1 \subset B_0$ be a subbody of B_0. Then the integral

\[
\Pi(\chi) = \int_{B_1} (T \cdot v + T_{(2)} \cdot \text{grad} v + \ldots + T_{(K+1)} \cdot \text{grad}^K v) \, dV
\]

with the same dynamic fields T, $T_{(2)}$, \ldots, $T_{(K+1)}$ restricted to the domain of the subbody is a power functional for B_1.

Proof. We compose the body by a set of subbodies in the following way. Let \mathcal{N} be an index set and $\{B_i, i \in \mathcal{N}\}$ a collection of subbodies which cover B_0, i.e.,

\[\bigcup_{\mathcal{N}} B_i = B_0 \quad \text{and} \quad \bigcap_{\mathcal{N}} B_i = \text{null set}.\]

Let $\Pi_i(\chi)$ be the (local) power functional of some B_i, which has a representation as an integral (1.77). Then we can construct a (global) power functional $\Pi_0(\chi)$ for B_0 by composing the local power functionals $\Pi_i(\chi)$ by simply taking the dynamic fields T, $T_{(2)}$, \ldots, $T_{(K+1)}$ at some point from the particular local power functional $\Pi_i(\chi)$ in this region.

In fact, after the Compatibility Assumption 1.2 we know that $\Pi_0(\chi)$ is objective if and only if all $\Pi_i(\chi)$ are objective. Therefore, a motion χ for B_0 is admissible if and only if its restrictions to all subbodies is also admissible.

Since we do not demand uniqueness of the power functional, this $\Pi_0(\chi)$ would always be a choice for a power functional that gives us a correct answer to the question whether some motion is admissible or not.

This construction of $\Pi_0(\chi)$ works for every collection of subbodies. So for every subbody B_1 one can find such a collection that contains B_1; q.e.d.

This means that whenever two bodies share a common part, then in this part the integrands of the power-functionals can be taken as identical. This is typical property of densities, and the integrand of (1.76) is in fact the virtual power density.

The same holds if we replace the power by the virtual power and the velocity by the virtual velocity in the above theorem.
Theorem 1.16 (localization of the virtual power)
Let the virtual power functional be given in the form (1.76)

\(\delta II(\chi, \delta v) = \int_{B_0} (T \cdot \delta v + \nabla \cdot \delta v + \ldots + \nabla K_1 \cdot \delta v) \, dV \)

for a body \(B_0 \), and let \(B_1 \subset B_0 \) be a subbody of \(B_0 \). Then the integral

\(\delta II(\chi, \delta v) = \int_{B_1} (T \cdot \delta v + \nabla \cdot \delta v + \ldots + \nabla K_1 \cdot \delta v) \, dV \)

with the same dynamic fields \(T, \nabla, \ldots, \nabla K_1 \) restricted to the domain of the subbody is a virtual power functional for \(B_1 \).

We will next consider the transformation behaviour of the dynamic fields under change of observer.

Theorem 1.17 (transformations of dynamic fields)
The fields of the dynamic variables \(T_i, i = 1, \ldots, K+1 \), are objective under change of observer

\(T_i^* = Q \cdot T_i \).

Proof. With (1.31) we get

\(\nabla^*(Q \cdot \delta v) = Q \cdot \nabla^* \delta v = Q \cdot (\nabla \delta v) \cdot Q^T = Q \cdot \nabla K_1 \delta v \)

\(\forall \delta v \in \delta V \), and more generally for higher gradients, by the use of the RAYLEIGH product \(\cdot^* \) (which shall not be confused with the upper asterisk indicating the change of observer)

\(\nabla^K(Q \cdot \delta v) = Q \cdot \nabla K^K \delta v \)

\(\forall \delta v \in \delta V \).

By (1.59) we have for all motions

\(\delta II^*(\chi^*, Q \cdot \delta v) \)

\(= \int_{B_t} [(Q^T \cdot T^*) \cdot \delta v + (Q^T \cdot \nabla^* \delta v) \cdot \delta v + \ldots + (Q^T \cdot \nabla K^K \delta v)] \, dV \)

by (0.13)

\(= \int_{B_t} [(Q^T \cdot T^*) \cdot \delta v + (Q^T \cdot \nabla^* \delta v) \cdot \delta v + \ldots + (Q^T \cdot \nabla K^K \delta v)] \, dV \)

\(= \delta II(\chi, \delta v) \)

\(= \int_{B_t} [T \cdot \delta v + T \cdot \nabla \delta v + \ldots + T \cdot \nabla K \delta v] \, dV \)

\(\forall \delta v \in \delta V \).

A comparison in the arbitrary fields \(\delta v \in \delta V \) leads to the desired result; q.e.d.

By the definition of the generalized force (1.61), we have for any observer
\[
\delta \Pi (\chi, \delta v_o) = f \cdot \delta v_o = \int_{\mathcal{B}_i} \bigg(\mathbf{T} (x) \cdot \delta v_o \bigg) \, dV = \int_{\mathcal{B}_i} \bigg(\frac{\partial}{\partial \chi} \mathbf{T} (x) \bigg) \, dV \cdot \delta v_o
\]
and obtain the representation
\[
\mathbf{f} = \int_{\mathcal{B}_i} \frac{\partial}{\partial \chi} \mathbf{T} (x) \, dV.
\]
Analogously, the definition of the generalized torque (1.62)
\[
\delta \Pi (\chi, \delta \omega \times x) = m_O \cdot \delta \omega
\]
\[
= \int_{\mathcal{B}_i} \bigg[\mathbf{T} \cdot \delta \omega \times x + \frac{\partial}{\partial x} \frac{\partial}{\partial \chi} \delta \omega \times x \bigg] \, dV
\]
\[
= \int_{\mathcal{B}_i} \bigg(x \times \mathbf{T} + 2 \text{axi} \bigg(\frac{\partial}{\partial \chi} \mathbf{T} \bigg) \bigg) \, dV \cdot \delta \omega
\]
with \text{axi} \frac{\partial}{\partial \chi} \mathbf{T} being the axial vector of \frac{\partial}{\partial \chi} \mathbf{T} leads to the representation
\[
m_O = \int_{\mathcal{B}_i} \bigg(x \times \mathbf{T} + 2 \text{axi} \bigg(\frac{\partial}{\partial \chi} \mathbf{T} \bigg) \bigg) \, dV.
\]
Here we used the following rules. For the position vector \(x \) and any constant vector \(\delta \omega \), one finds
\[
\text{grad} (\delta \omega \times x) = (\delta \omega \times x) \otimes \nabla = \delta \omega \times (x \otimes \nabla) = \delta \omega \times I
\]
which is antisymmetric. Thus
\[
\text{axi} \, \text{grad} (\delta \omega \times x) = \text{axi} (\delta \omega \times I) = \delta \omega
\]
and, consequently,
\[
\frac{\partial}{\partial \chi} \mathbf{T} \cdot \text{axi} \text{grad} (\delta \omega \times x) = 2 \text{axi} \text{skw} \mathbf{T} \cdot \text{axi} \text{grad} (\delta \omega \times x)
\]
\[
= 2 \text{axi} \bigg(\frac{\partial}{\partial \chi} \mathbf{T} \bigg) \cdot \text{axi} \text{grad} (\delta \omega \times x) = 2 \text{axi} \bigg(\frac{\partial}{\partial \chi} \mathbf{T} \bigg) \cdot \delta \omega .
\]
The force is then after (1.65)
\[
f = \int_{\mathcal{B}_i} \bigg(\mathbf{T} + \rho \mathbf{x}^{**} \bigg) \, dV
\]
and the torque after (1.66)
\[
m_O = \int_{\mathcal{B}_i} \bigg[x \times (\mathbf{T} + \rho \mathbf{x}^{**}) + 2 \text{axi} \bigg(\frac{\partial}{\partial \chi} \mathbf{T} \bigg) \bigg] \, dV.
\]
By Theorem 1.17 we know that $^{(1)}T$ and $\text{axi}^{(2)}T$ are objective vector fields, but not f and m_O.

If we substitute these representations into the EULER’s laws of motion (1.73) and (1.74), we obtain their local forms.

Theorem 1.18 (local form of the laws of motion)

A motion of the body is dynamically admissible if and only if the local form of the laws of motion hold

$$^{(1)}T = 0$$

$$\text{axi}^{(2)}T = 0$$

almost everywhere in the body during the motion.

The other higher-order stress tensors $\text{sym}^{(2)}T$, $T^{(3)}$, ..., $T^{(K+1)}$ do not directly enter the laws of motion. This, however, does not mean that such quantities cannot play a useful role in mechanical theories, as we will see in what follows.

The next theorem is a stronger version of the PVP of the last section.

Theorem 1.19 (integral version of PVP)

A motion of the body is dynamically admissible if and only if the balance of virtual power holds in the form

$$\int_{B_i} (^{(1)}T \cdot \delta v + \text{axi}^{(2)}T \cdot \text{curl} \delta v) dV = 0$$

for all virtual velocity fields $\delta v \in \delta \mathcal{V}$ for one observer (and hence for all) during the motion.

Proof. We multiply the local laws of motion (1.92) and (1.93) by arbitrary vectors δv and $2 \delta \mathbf{\omega}$. Then

$$^{(1)}T \cdot \delta v + \text{axi}^{(2)}T \cdot 2 \delta \mathbf{\omega} = 0$$

if and only if (1.92) and (1.93) hold, i.e., if the motion is admissible. If we interpret δv as the local value of some virtual velocity field $\delta v \in \delta \mathcal{V}$, and $2 \delta \mathbf{\omega}$ as the local value of its curl, then we obtain the above form of the balance of virtual power as a necessary condition for a motion to be dynamically admissible.

On the other hand, if (1.94) holds for the body, then after Theorem 1.16 it would also hold for all subbodies. So the integrand must vanish everywhere in B_i if it is continuous, which gives (1.92) and (1.93). By Theorem 1.18 the motion must then be admissible; q.e.d.

In what follows we will derive a number of alternative forms of the forces and torques, which are altogether equivalent to those of (1.90) and (1.91). The divergence theorem gives

$$\int_{B_i} T^{(K+1)} \cdot \text{grad}^K \delta v dV$$
for any $K \geq 1$. In particular we achieve for

$K = 1$:

\begin{align}
\int_{\partial \mathcal{B}_t} \langle (\mathbf{T} \cdot \mathbf{n}) \rangle \: \cdots \: \text{grad} \: \delta \mathbf{v} \: dA - \int_{\mathcal{B}_t} \langle \text{div} \mathbf{T} \rangle \: \cdots \: \text{grad} \: \delta \mathbf{v} \: dV
\end{align}

$K = 2$:

\begin{align}
\int_{\partial \mathcal{B}_t} \langle (\mathbf{T} \cdot \mathbf{n}) \rangle \: \cdots \: \text{grad} \: \delta \mathbf{v} \: dA - \int_{\mathcal{B}_t} \langle \text{div} \mathbf{T} \rangle \: \cdots \: \text{grad} \: \delta \mathbf{v} \: dV
\end{align}

$K = 3$:

\begin{align}
\int_{\partial \mathcal{B}_t} \langle (\mathbf{T} \cdot n) \rangle \: \cdots \: \text{grad} \: \delta \mathbf{v} \: dA - \int_{\mathcal{B}_t} \langle \text{div} \mathbf{T} \rangle \: \cdots \: \text{grad} \: \delta \mathbf{v} \: dV
\end{align}

We substitute this into (1.76). For an arbitrary K it gives

\begin{align}
\delta \Pi(\chi, \delta \mathbf{v}) = \int_{\mathcal{B}_t} \sum_{j=1}^{k+1} \left[(-1)^{j-1} \text{div}^{j-1} \langle \mathbf{T} \rangle \right] \cdot \delta \mathbf{v} \: dV
\end{align}

\begin{align}
+ \int_{\partial \mathcal{B}_t} \sum_{j=2}^{k+1} \left[(-1)^{j-2} \text{div}^{j-2} \langle \mathbf{T} \rangle \cdot n \right] \cdot \delta \mathbf{v} \: dA
\end{align}

\begin{align}
\cdots
\end{align}

\begin{align}
+ \int_{\partial \mathcal{B}_t} \langle (\mathbf{T} \cdot \mathbf{n}) \rangle \: \cdots \: \text{grad} \: \delta \mathbf{v} \: dA.
\end{align}
For a constant $\delta v_0 \in \delta V$ this gives the force in the form

$$f = \int_{\Omega} \left[\rho \dot{\mathbf{x}} + \left(\frac{1}{2} \mathbf{T} - \text{div} \mathbf{T} + \text{div}^2 \mathbf{T} - \ldots - (-1)^K \text{div}^K \mathbf{T} \right) \right] dV$$

$$+ \int_{\partial \Omega} \left[\left(\frac{1}{2} \mathbf{T} - \text{div} \mathbf{T} - \ldots - (-1)^K \text{div}^K \mathbf{T} \right) \mathbf{n} \right] dA$$

and for $\delta v \equiv \delta \omega \times \mathbf{x} \in \delta V$ this gives the torque

$$m_\Omega = \int_{\Omega} \left[\mathbf{x} \times \left[\rho \dot{\mathbf{x}} + \left(\frac{1}{2} \mathbf{T} - \text{div} \mathbf{T} + \text{div}^2 \mathbf{T} - \ldots - (-1)^K \text{div}^K \mathbf{T} \right) \right] dV$$

$$+ \int_{\partial \Omega} \left(\mathbf{x} \times \left[\left(\frac{1}{2} \mathbf{T} - \text{div} \mathbf{T} - \ldots - (-1)^K \text{div}^K \mathbf{T} \right) \right] \mathbf{n} \right) dA$$

$$- 2 \mathbf{axi} \left[\left(\frac{1}{2} \mathbf{T} - \text{div} \mathbf{T} - \ldots - (-1)^K \text{div}^K \mathbf{T} \right) \mathbf{n} \right] dA.$$

So by incrementing K, we can produce a catalogue of infinitely many theories, which are altogether equivalent with respect to the question of whether a motion is dynamically admissible or not. They are, however, not equivalent in their possibilities of the material modelling.

In what follows, we will specify these findings for the cases $K \equiv 0, 1, 2, 3$. In each case we obtain a theory that gives reasonable results for a certain class of problems.

Historically, the case $K \equiv 0$ dates back to the *Principia* of NEWTON (1687), the case $K \equiv 1$ to CAUCHY (1823), and the case $K \equiv 2$ and 3 to the pioneers of gradient theories like TOUPIN (1962) and MINDLIN (1965). It is remarkable that the time laps between foundations of these three continuum theories is in both cases approximately one and a half century.
Example: NEWTON continuum ($K \equiv 0$)

The most simple, but by no means trivial case is that of $K \equiv 0$. This gives for the virtual power (1.76) the only remainder

\begin{equation}
\delta \Pi(\chi, \delta v) = \int_{B_1} (\mathbf{T} \cdot \delta v) \, dV
\end{equation}

and for the total power

\begin{equation}
\Pi(\chi) = \int_{B_1} (\mathbf{T} \cdot v) \, dV.
\end{equation}

The force remains in the form of (1.90)

\begin{equation}
f = \int_{B_1} (\mathbf{T} + \rho \mathbf{\dot{x}}^*) \, dV
\end{equation}

while the torque becomes after (1.91)

\begin{equation}
\mathbf{m}_O = \int_{B_1} \mathbf{x} \times (\mathbf{T} + \rho \mathbf{\dot{x}}^*) \, dV.
\end{equation}

The equations of motion are in this case

\begin{equation}
\mathbf{T} = \mathbf{0}
\end{equation}

\begin{equation}
\mathbf{x} \times \mathbf{T} = \mathbf{0}.
\end{equation}

Here, the balance of linear momentum obviously includes the balance of angular momentum.

Such a situation is known for so-called mass points, i.e., bodies that are (i) not in direct contact, and (ii) only interact by central (body) forces. The latter can be probably assumed if the diameter of the bodies is small compared to the distances between the bodies, as we have it if we consider the motion of the planets around the central star under mutual gravitation. To obtain KEPLER’s elliptic orbits it is sufficient to solve the linear momentum balance named NEWTON’s law for the usual gravitational law. The balance of angular momentum becomes trivial, since no torque acts with respect to the centres of mass of the mass points, so that conservation of angular momentum holds.

We see that even this extreme case $K \equiv 0$ gives a reasonable theory that applies well under certain circumstances.
Example: CAUCHY continuum \((K \equiv 1)\) (simple materials)

In order to show the relation to the classical theory, we take \(K \equiv 1\). Then (1.76) reduces to

\[
\delta \Pi(x, \delta v) = \int_{\Omega_t} (\overset{\hphantom{1}}{T} \cdot \delta v + \overset{\hphantom{2}}{T} \cdot \text{grad} \delta v) \, dV.
\]

By applying the divergence theorem (1.97), we obtain alternatively

\[
\delta \Pi(x, \delta v) = \int_{\Omega_t} (\overset{\hphantom{1}}{T} - \text{div} \overset{\hphantom{2}}{T}) \cdot \delta v \, dV + \int_{\partial \Omega_t} (\overset{\hphantom{2}}{T} \cdot n) \cdot \delta v \, dA.
\]

For a constant field \(\delta v_0\) this gives the force after (1.65) in two versions

\[
f = \int_{\Omega_t} \left(\overset{\hphantom{1}}{T} + \rho \overset{\hphantom{2}}{x}^{**} \right) \, dV = \int_{\Omega_t} \left(\overset{\hphantom{1}}{T} - \text{div} \overset{\hphantom{2}}{T} + \rho \overset{\hphantom{2}}{x}^{**} \right) \, dV + \int_{\partial \Omega_t} \left(\overset{\hphantom{2}}{T} \cdot n \right) \, dA
\]

and for \(\delta v = \delta \omega \times x\) the torque after (1.66) also in two versions

\[
\mathbf{m}_O = \int_{\Omega_t} \left[x \times \left(\overset{\hphantom{1}}{T} + \rho \overset{\hphantom{2}}{x}^{**} \right) + 2 axi \overset{\hphantom{2}}{T} \right] \, dV
\]

\[
= \int_{\Omega_t} \left[x \times \left(\overset{\hphantom{1}}{T} - \text{div} \overset{\hphantom{2}}{T} + \rho \overset{\hphantom{2}}{x}^{**} \right) \right] \, dV + \int_{\partial \Omega_t} x \times \left(\overset{\hphantom{2}}{T} \cdot n \right) \, dA.
\]

Usually the force acting in the interior of the body is named specific body force

\[
\mathbf{b} = \left(\overset{\hphantom{1}}{T} - \text{div} \overset{\hphantom{2}}{T} \right) / \rho + \overset{\hphantom{2}}{x}^{**}
\]

and that acting on its surface is the traction field

\[
\mathbf{t} = \overset{\hphantom{2}}{T} \cdot n
\]

so that the forces and torques are

\[
f = \int_{\Omega_t} \mathbf{b} \, dm + \int_{\partial \Omega_t} \overset{\hphantom{2}}{T} \cdot n \, dA
\]

\[
\mathbf{m}_O = \int_{\Omega_t} x \times \mathbf{b} \, dm + \int_{\partial \Omega_t} x \times \overset{\hphantom{2}}{T} \cdot n \, dA
\]

which are the forms known from the CAUCHY continuum (1.7) and (1.8). The equations of motion are the classical CAUCHY laws (1.14) and (1.15)

\[
\text{div} \overset{\hphantom{2}}{T} + \mathbf{b} \rho = \overset{\hphantom{2}}{x}^{**} \rho
\]
so that \(\mathbf{T} \) can be identified with CAUCHY’s stress tensor.
Example15: Second-gradient continuum \((K = 2)\)

We consider a body with a surface that consist of a finite number of smooth segments, bounded by edges, which eventually meet in corners (vertices). We will again start with a volumetric form of the virtual power. By partial integration we can transform some power terms into surface integrals (as we did in the preceding example). Some of them can again be transformed into edge or line integrals.

We will write again \(\mathcal{B}_t\) for the region that the body currently occupies in space, and \(\partial \mathcal{B}_t\) for its boundary. This may be subdivided into a finite set of surface segments, bounded by edges, which are denoted by \(\mathcal{L}_t\). In order to avoid sums and indices, the expression \(\int_{\mathcal{L}_t}\) stands for the line integrals over all edges of all surface segments. So every edge line enters twice since it belongs to two adjacent surface regions. This is the list of notations:

- \(\mathcal{B}_t\): region of the body currently occupied in space
- \(\partial \mathcal{B}_t\): collection of all of its surface segments
- \(\mathcal{L}_t\): collection of all edges of the surface segments
- \(n\): outer normal to the surface segments
- \(t_{\mathcal{L}}\): FRENET’s tangent to the edge line
- \(m := t_{\mathcal{L}} \times n\)

In the case of a second-gradient continuum the virtual power can be brought into one of the following alternative forms

15 This part has been coauthored by ALBRECHT BERTRAM and CHRISTIAN REIHER.
\[\delta \Pi(\chi, \delta v) = \int_{B} \left(\langle 1 \rangle \cdot \delta v + \langle 2 \rangle \cdot \text{grad} \, \delta v + \langle 3 \rangle \cdot \text{grad} \, \text{grad} \, \delta v \right) dV \]

\[= \int_{B} \left[\langle 1 \rangle \cdot \delta v - \text{div} \langle 2 \rangle \cdot \text{grad} \, \delta v \right] dV \]

\[+ \int_{\partial B} \left[\langle 2 \rangle \cdot (\nabla \cdot n) \cdot \delta v + \langle 3 \rangle \cdot (\nabla \cdot n) \cdot \text{grad} \, \delta v \right] dA \]

\[(1.119) \quad + \int_{\partial B} \left\{ \left[\langle 2 \rangle \cdot (\nabla \cdot n) \right] \cdot \delta v + \langle 3 \rangle \cdot (\nabla \cdot n) \cdot \text{grad} \, \delta v \right\} dA. \]

These forms can be further reformulated by applying the divergence theorem on the surface terms. Herein we follow TOUPIN (1962) and MINDLIN (1965)\(^{16}\). First we decompose the gradient of a differentiable function \(\phi \) at surface points into its normal and its tangential part

\[(1.120) \quad \text{grad} \, \phi = \text{grad}_n \phi + \text{grad}_t \phi \]

which corresponds to the natural split of the spatial nabla operator

\[\nabla = \nabla_n + \nabla_t \]

with

\[(1.121) \quad \nabla_n := n \otimes n \cdot \nabla = \nabla \cdot n \otimes n = \frac{\partial}{\partial x_n} n \]

with the outer normal \(n \) to the surface and the normal coordinate \(x_n \), and the tangential part

\[(1.122) \quad \nabla_t := \nabla \cdot (I - n \otimes n). \]

The trace of these gradients is the divergence which is also decomposed

\[(1.123) \quad \text{div} \, \phi = \text{div}_n \, \phi + \text{div}_t \, \phi. \]

If we decompose the gradient within the following expression with a vector field \(v \) and a second-order tensor field \(\langle 2 \rangle \) and use the product rule, we obtain

\[(1.124) \quad \langle 2 \rangle \cdot \text{grad} \, v = \langle 2 \rangle \cdot \text{grad}_n \, v + \langle 2 \rangle \cdot \text{grad}_t \, v. \]

\[= \mathbf{T} \cdot \mathbf{n} + \text{div} \mathbf{v} (\mathbf{v} \cdot \mathbf{T}) - \text{div} \mathbf{T} \cdot \mathbf{v}. \]

The surface divergence theorem holds in the form\(^\text{17}\)

\[
(1.125) \quad \int_{\partial \mathcal{B}_t} \text{div} \mathbf{v} \, dA = \int_{\partial \mathcal{B}_t} \mathbf{v} \cdot \mathbf{n} \, dA + \int_{\mathcal{L}_t} \mathbf{v} \cdot \mathbf{m} \, dL
\]

where \(\mathcal{L}_t\) is the union of all edges (lines) of the body in the current placement, \(\mathbf{t}_e\) is the tangent to the edge, and \(\mathbf{m}\) is normal to the edge and to \(\mathbf{n}\)

\[
(1.126) \quad \mathbf{m} : = \mathbf{t}_e \times \mathbf{n}
\]

so that \(\{ \mathbf{t}_e, \mathbf{n}, \mathbf{m}\}\) forms a positive oriented ONB. The term \(-1/2 \text{div} \mathbf{n}\) stands for the mean curvature of the surface.

Taking \(\mathbf{v} = \delta \mathbf{v} \cdot \mathbf{T} \cdot \mathbf{n}\) in (1.125) gives

\[
(1.127) \quad \int_{\partial \mathcal{B}_t} \text{div} \mathbf{v} (\delta \mathbf{v} \cdot \mathbf{T} \cdot \mathbf{n}) \, dA
\]

\[
= \int_{\partial \mathcal{B}_t} (\text{div} \mathbf{n} (\mathbf{T} \cdot \mathbf{n}) \cdot \delta \mathbf{v}) \, dA + \int_{\mathcal{L}_t} (\mathbf{T} \cdot \mathbf{m} \otimes \mathbf{n}) \cdot \delta \mathbf{v} \, dL.
\]

We apply these identities to the following term from the power functional (1.119.3)

\[
(1.128) \quad \int_{\partial \mathcal{B}_t} (\mathbf{T} \cdot \mathbf{n}) \cdot \text{grad} \delta \mathbf{v} \, dA
\]

by (1.124)

\[
= \int_{\partial \mathcal{B}_t} \{(\mathbf{T} \cdot \mathbf{n}) \cdot \text{grad} \delta \mathbf{v} + \text{div} \mathbf{v} (\mathbf{T} \cdot \mathbf{n}) - \text{div} \mathbf{T} \cdot \mathbf{n} \cdot \delta \mathbf{v}\} \, dA
\]

\[
= \int_{\partial \mathcal{B}_t} (\mathbf{T} \cdot \mathbf{n}) \cdot \text{grad} \delta \mathbf{v} \, dA
\]

\[
+ \int_{\partial \mathcal{B}_t} [\mathbf{T} \cdot (\text{div} \mathbf{n} \otimes \mathbf{n} - \text{grad} \mathbf{n}) - \text{div} \mathbf{T} \cdot \mathbf{n}] \cdot \delta \mathbf{v} \, dA
\]

\[
+ \int_{\mathcal{L}_t} (\mathbf{T} \cdot \mathbf{m} \otimes \mathbf{n}) \cdot \delta \mathbf{v} \, dL.
\]

We substitute this into the above expression for the virtual power (1.119.3)

\(\delta \Pi(\chi, \delta v) = \int_{\Omega_t} \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{T} \\ \text{div}^2 \mathbf{T} \end{array} \right) \cdot \delta v \; dV \)

+ \int_{\partial \Omega_t} \left\{ \left[\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{n} \\ \text{div}^2 \mathbf{T} \end{array} - 2 \text{div} \mathbf{v} \mathbf{v}^T \right] \cdot \mathbf{n} + \mathbf{T} \cdot \left(\text{div} \mathbf{n} \mathbf{n} \otimes \mathbf{n} - \text{grad} \mathbf{n} \right) \right\} \cdot \delta v

+ \left(\mathbf{T} \cdot \mathbf{n} \right) \cdot \text{grad} \mathbf{n} \right\} \; dA + \int_{\mathcal{L}_t} \left(\mathbf{T} \cdot \mathbf{m} \otimes \mathbf{n} \right) \cdot \delta v \; dL .

For a constant \(\delta v \) this gives the generalized force in the form

\(\delta \Pi(\chi, \delta v) = \int_{\Omega_t} \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{T} \\ \text{div}^2 \mathbf{T} \end{array} \right) \cdot \delta v \; dV \)

+ \int_{\partial \Omega_t} \left\{ \left[\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{n} \\ \text{div}^2 \mathbf{T} \end{array} - 2 \text{div} \mathbf{v} \mathbf{v}^T \right] \cdot \mathbf{n} + \mathbf{T} \cdot \left(\text{div} \mathbf{n} \mathbf{n} \otimes \mathbf{n} - \text{grad} \mathbf{n} \right) \right\} \cdot \delta v

+ \left(\mathbf{T} \cdot \mathbf{n} \right) \cdot \text{grad} \mathbf{n} \right\} \; dA + \int_{\mathcal{L}_t} \left(\mathbf{T} \cdot \mathbf{m} \otimes \mathbf{n} \right) \cdot \delta v \; dL .

For a constant \(\delta v \) this gives the generalized force in the form

\(\left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{T} \\ \text{div}^2 \mathbf{T} \end{array} \right) \cdot \delta v \) dm + \int_{\partial \Omega_t} \mathbf{t}_2 \; dA + \int_{\mathcal{L}_t} \mathbf{t}_2 \cdot \delta v \; dL .

with the specific body force

\(\mathbf{b}_2 : = \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{T} \\ \text{div}^2 \mathbf{T} \end{array} \right) \cdot \delta \mathbf{v} / \rho + \mathbf{x}^{**} \)

and the surface tractions

\(\mathbf{t}_2 : = \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{n} \\ \text{div}^2 \mathbf{T} \end{array} - 2 \text{div} \mathbf{v} \mathbf{v}^T \right) \cdot \mathbf{n} + \mathbf{T} \cdot \left(\text{div} \mathbf{n} \mathbf{n} \otimes \mathbf{n} - \text{grad} \mathbf{n} \right) \)

and the edge forces

\(\mathbf{t}_2 \cdot \delta v \)

such that the force is

\(\mathbf{f} = \int_{\Omega_t} \mathbf{b}_2 \; dm + \int_{\partial \Omega_t} \mathbf{t}_2 \; dA + \int_{\mathcal{L}_t} \mathbf{t}_2 \; dL .

Note that \(\mathbf{t}_2 \) is odd in \(\mathbf{n} \) so that the reaction principle holds for the surface tractions

\(- \mathbf{t}_2(\mathbf{n}) = \mathbf{t}_2(-\mathbf{n}) .

We will now introduce the concept of normal and tangential axial vectors. Let \(\mathbf{T} \) be a second-order tensor and \(\mathbf{T} \) an orthonormal vector basis. Then we define

\(2 \text{axi} \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{T} \\ \text{div}^2 \mathbf{T} \end{array} \right) \cdot \delta \omega : = \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{v} \mathbf{v}^T \end{array} \right) \cdot \delta \omega \times \mathbf{1} \)

as in (0.2)

\(2 \text{axi}_n \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{T} \\ \text{div}^2 \mathbf{T} \end{array} \right) \cdot \delta \omega : = \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{v} \mathbf{v}^T \end{array} \right) \cdot \delta \omega \times \mathbf{n} \otimes \mathbf{n} \)

\(2 \text{axi}_t \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{T} \\ \text{div}^2 \mathbf{T} \end{array} \right) \cdot \delta \omega : = \left(\begin{array}{c} \mathbf{T} \\ \text{div} \mathbf{v} \mathbf{v}^T \end{array} \right) \cdot \delta \omega \times (\mathbf{1} - \mathbf{n} \otimes \mathbf{n}) \)

for arbitrary vectors \(\delta \omega \). This gives
\[2 \text{axi}(\mathbf{T}) = (T_{32} - T_{23}) \mathbf{e}_1 + (T_{13} - T_{31}) \mathbf{e}_2 + (T_{21} - T_{12}) \mathbf{n} \]

(1.137) \[2 \text{axi}_n(\mathbf{T}) = -T_{23} \mathbf{e}_1 + T_{13} \mathbf{e}_2 \]

(1.138) \[2 \text{axi}_i(\mathbf{T}) = T_{32} \mathbf{e}_1 - T_{31} \mathbf{e}_2 + (T_{21} - T_{12}) \mathbf{n} \]

For a constant vector \(\delta \omega \) and position vector \(\mathbf{x} \) we obtain for the gradients

(1.139) \[\mathbf{T} \cdot \text{grad}_n (\delta \omega \times \mathbf{x}) = \mathbf{T} \cdot (\delta \omega \times \mathbf{n} \otimes \mathbf{n}) = 2 \text{axi}_n(\mathbf{T}) \cdot \delta \omega \]

With this abbreviation we achieve for the torque from (1.129) using (1.89)

(1.140) \[\int_{\mathcal{B}_t} \mathbf{b}_2 \, dm + \int_{\partial \mathcal{B}_t} \mathbf{t}_2 \, dA + \int_{\mathcal{L}_t} \mathbf{t}_2 \, dL = \int_{\mathcal{B}_t} \mathbf{x} \otimes \mathbf{x} \, dm \]

(1.141) \[\int_{\mathcal{B}_t} \mathbf{x} \times \mathbf{b}_2 \, dm + \int_{\partial \mathcal{B}_t} \{\mathbf{x} \times \mathbf{t}_2 + 2 \text{axi}_n(\mathbf{T} \cdot \mathbf{n})\} \, dA + \int_{\mathcal{L}_t} \mathbf{x} \times \mathbf{t}_2 \, dL = \int_{\mathcal{B}_t} \mathbf{x} \times \mathbf{x} \otimes \mathbf{x} \, dm \]

The next theorem is an alternative form of EULER’s laws of motion (1.73), (1.74) using (1.129) and (1.132).

Theorem 1.20 (generalized EULER’s laws of motion)

A motion of the body is dynamically admissible if and only if the laws of motion

(1.142) \[\text{div} \mathbf{T} = \text{div} \mathbf{T} + \rho \mathbf{b}_2 = \rho \mathbf{x} \otimes \mathbf{x} \]

(1.143) \[\mathbf{T} = \mathbf{T} \]

hold everywhere in the body.

By use of (1.92), (1.93), and (1.130) we obtain the field formulations.

Theorem 1.21 (extended CAUCHY’s laws)

A motion of the body is dynamically admissible if and only if

(1.144) \[\text{div} \mathbf{T} - \text{div} \mathbf{T} + \rho \mathbf{b}_2 = \rho \mathbf{x} \otimes \mathbf{x} \]

We are now able to reformulate the principle of virtual power extending Theorem 1.19 by (1.129).
Theorem 1.22 (integral version of PVP)
A motion of the body is dynamically admissible if and only if the balance of virtual power holds in the form

\[
\int_{\mathcal{B}_i} (b_2 - x^{**}) \cdot \delta v \, dm + \int_{\partial \mathcal{B}_i} [t_2 \cdot \delta v + (\mathbf{T} \cdot n) \cdot \text{grad}_n \delta v] \, dA \\
+ \int_{\mathcal{L}_i} t_2_{\text{edge}} \cdot \delta v \, dL = \int_{\mathcal{B}_i} (\mathbf{T} \cdot \text{sym} \, \delta v + (\mathbf{T} \cdot \text{grad} \, \delta v) \cdot \text{grad} \, \delta v) \, dV
\]

for all vector fields \(\delta v \in \delta \mathcal{V} \) for one observer (and hence for all).

Proof. Let us assume that a motion of the body is dynamically admissible so that (1.142) and (1.143) hold. Then the balance of linear momentum is fulfilled iff

\[
d\mathbf{T} - \text{div} \mathbf{T} + \rho (b_2 - x^{**}) = 0
\]

holds in every point, and also

\[
\{d\mathbf{T} - \text{div} \mathbf{T} + \rho (b_2 - x^{**})\} \cdot \delta v = 0
\]

for any field \(\delta v \in \delta \mathcal{V} \). The integral over the body also vanishes

\[
\int_{\mathcal{B}_i} \{d\mathbf{T} - \text{div} \mathbf{T} + \rho (b_2 - x^{**})\} \cdot \delta v \, dm = 0
\]

so that we get with (1.119.3) and (1.128)

\[
\int_{\mathcal{B}_i} \rho (b_2 - x^{**}) \cdot \delta v \, dV + \int_{\partial \mathcal{B}_i} [t_2 \cdot \delta v + (\mathbf{T} \cdot n) \cdot \text{grad}_n \delta v] \, dA \\
+ \int_{\mathcal{L}_i} t_2_{\text{edge}} \cdot \delta v \, dL = \int_{\mathcal{B}_i} (\mathbf{T} \cdot \text{sym} \, \delta v + (\mathbf{T} \cdot \text{grad} \, \delta v) \cdot \text{grad} \, \delta v) \, dV.
\]

In addition, the balance of moment of momentum (1.143) is fulfilled iff

\[
\mathbf{T} \cdot \text{skw} \, \text{grad} \delta v = 0
\]

or iff

\[
\int_{\mathcal{B}_i} \mathbf{T} \cdot \text{skw} \, \text{grad} \delta v \, dV = 0
\]

holds for all fields \(\delta v \in \delta \mathcal{V} \). We subtract this from the above equation and obtain (1.144), which completes our proof; q.e.d.
By identifying δv with the current velocity field $v \in \delta \mathbb{V}$, we obtain the balance of power.

Theorem 1.23 (global balance of power)

If a motion of the body is dynamically admissible then the balance of power states that the power of the external loads equals the change of the kinetic energy plus the stress power

\[
\int_{\partial B(t)} b_2 \cdot v \, dm + \int_{\partial B(t)} [t_2 \cdot v + (T \cdot n) \cdot \text{grad}_n v] \, dA + \int_{\mathcal{L}(t)} t_2_{\text{edge}} \cdot v \, dL
\]

\[
= (\int_{\partial B(t)} \frac{1}{2} v \cdot v \, dm) + \int_{\partial B(t)} (\frac{2}{3} T \cdot \text{sym grad} v + \frac{3}{2} T \cdot \text{grad grad} v) \, dV
\]

for the body.

This balance gives only a necessary, but not a sufficient condition for the admissibility of a motion.

Boundary conditions

From the above theorem we also see the dynamic or **NEUMANN boundary conditions** for the surface tractions which can be prescribed, namely

- the vector field of the tractions on $\partial B(t)$
 \[
t_2_{\text{presc}} = t_2
\]

- the line forces on edges on $\mathcal{L}(t)$
 \[
t_2_{\text{edge presc}} = t_2_{\text{edge}}
\]

- and the tensor field of the double tractions in normal direction on $\partial B(t)$
 \[
s_2_{\text{presc}} = \frac{2}{3} T \cdot \text{sym grad} v + \frac{3}{2} T \cdot \text{grad grad} v
\]

since $\text{grad}_n \delta v$ has only a normal component in its second entry.

The **DIRICHLET boundary conditions** are then the description of the displacement field u on the surface, its normal gradient $\text{grad}_n u$ on the surface of the body, and the displacements of the edges (in a compatible way).

The formulae (1.132) and (1.133) allow for a deeper understanding. (1.133) reveals that any cut through the surface with unit normal vector m uncovers a cutting force (of dimension force per unit length)

\[
t_2_{\text{line}} = \frac{3}{2} T \cdot \text{sym grad} v + \frac{3}{2} T \cdot \text{grad grad} v
\]

produced by the non-symmetric surface tension

\[
S = (\frac{3}{2} T \cdot n) \cdot (I - n \otimes n).
\]
The surface tension vector t_2 has a normal, a shear, and a transverse component.

Thin shells are bearing structures which can also be described as surfaces endowed with such a surface stress tensor. So we arrive at the interpretation that the free boundary of our body is mantled with a crust shell. No bending moments and no torsional moments are present in this shell. However, it is not a membrane because of the transverse forces. The tangential divergence of the surface tension is

$$div_t S = div_t [(\mathbf{T} \cdot \mathbf{n}) \cdot (\mathbf{I} - \mathbf{n} \otimes \mathbf{n})] = div_t (\mathbf{T} \cdot \mathbf{n}) - (div_t \mathbf{n}) \mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}.$$

Moreover we introduce

$$t_i := (\mathbf{T} - div \mathbf{T}) \cdot \mathbf{n}.$$

Then (1.132) can be brought into the form

$$t_2 = t_i - div_t S.$$

This is the well-known equilibrium condition of force of a thin shell with a surface load $- t_i$ from within the body, and a surface load t_2 from outside.

Due to the asymmetry of the surface tension, the equilibrium of moments requires the following surface torque load acting on the crust shell

$$m_s = -2 axi S = -2 axi (\mathbf{T} \cdot \mathbf{n})$$

as can be shown by a lengthy calculation. This interpretation has been given by ARNOLD KRAWIETZ.
Example\(^{18}\): Third-gradient continuum \((K \equiv 3)\)

As in the preceding part, we consider a body with a finite number of smooth surface segments, intersecting by edges \(\mathcal{L}_t\) and meeting in corners or vertices \(\mathcal{P}_t\).

This is the list of notations:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{B}_t)</td>
<td>region of the body currently occupied in space</td>
</tr>
<tr>
<td>(\partial \mathcal{B}_t)</td>
<td>collection of all of its surface segments</td>
</tr>
<tr>
<td>(\mathcal{L}_t)</td>
<td>collection of all edges of the surface segments</td>
</tr>
<tr>
<td>(\mathcal{P}_t)</td>
<td>collection of all endpoints of the edges (vertices)</td>
</tr>
<tr>
<td>(n)</td>
<td>outer normal to the surface segments</td>
</tr>
<tr>
<td>(t_{\mathcal{L}})</td>
<td>FRENÉT’s tangent to the edge line</td>
</tr>
<tr>
<td>(n_{\mathcal{L}})</td>
<td>FRENÉT’s normal to the edge line</td>
</tr>
<tr>
<td>(b_{\mathcal{L}} := t_{\mathcal{L}} \times n_{\mathcal{L}})</td>
<td>FRENÉT’s binormal to the edge line</td>
</tr>
<tr>
<td>(m := t_{\mathcal{L}} \times n)</td>
<td></td>
</tr>
</tbody>
</table>

With these definitions, both \(\{t_{\mathcal{L}}, n, m\}\) and \(\{t_{\mathcal{L}}, n_{\mathcal{L}}, b_{\mathcal{L}}\}\) form orthonormal bases on the edges, the latter one only in curved segments.

In the case of a third-order gradient material, the virtual power can be brought with (1.100) into the form

\(^{18}\) This part has been coauthored by ALBRECHT BERTRAM and CHRISTIAN REIHER, see also MINDLIN (1965), DELL’ISOLA/ SEPPECHER (1995, 1997), JAVILI/ DELL’ISOLA/ STEINMANN (2013), POLIZZOTTO (2013), and CORDERO/ FOREST/ BUSSO (2016).
\[\delta \Pi(\mathbf{\chi}, \delta \mathbf{v}) = \int_{\mathcal{B}_l} \left((\mathbf{T} \cdot \delta \mathbf{v} + (\frac{\partial}{\partial t}) \mathbf{v} + (\frac{T}{2}) \mathbf{v} + (\frac{\delta}{\partial t}) \mathbf{v} + (\frac{\delta^2}{\partial t^2}) \mathbf{v} + (\frac{\delta^3}{\partial t^3}) \mathbf{v} \right) dV. \]

The only difference with (1.19) is the last term. So we can take all the results from the second-gradient continuum from the previous section, and just have to add the following term to which we apply the GAUSS-OSTROGRADSKI transformation

\[\int_{\partial \mathcal{B}_l} (\mathbf{\nabla} \cdot (\mathbf{T} \cdot \mathbf{n})) \delta \mathbf{v} dA - (\mathbf{\nabla} \cdot (\mathbf{T} \cdot \mathbf{n})) \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{\nabla} \delta \mathbf{v} \}

This form can be further reformulated by applying the divergence theorem to the last two surface terms. We again split the gradient and the divergence operations in normal and tangential parts after (1.120) and (1.123) and use the divergence theorem (1.128).

With this we get for

\[\int_{\partial \mathcal{B}_l} (\mathbf{\nabla} \cdot \mathbf{n}) \delta \mathbf{v} dA = \int_{\partial \mathcal{B}_l} \{(\mathbf{\nabla} \cdot \mathbf{n}) \cdot \mathbf{\nabla} \delta \mathbf{v} \}
\]

We now reformulate the other term of (1.99) in the following way

\[(\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} + (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]

\[+ \mathbf{n} \mathbf{\nabla} \delta \mathbf{v} \]
\[+ \text{div} \left[\text{grad} \, \delta v \cdot (\mathbf{T} \cdot \mathbf{n}) \right] - \text{div} \left(\mathbf{T} \cdot \mathbf{n} \right) \cdot \text{grad}_n \delta v\]

\[- \text{div} \left[\delta v \cdot \text{div} \left(\mathbf{T} \cdot \mathbf{n} \right) \right] + \text{div}^2 \left(\mathbf{T} \cdot \mathbf{n} \right) \cdot \delta v\]

\[= (\mathbf{T} \cdot \mathbf{n}) \cdot \text{grad}_n \delta v + \text{div} \left(\mathbf{T} \cdot \mathbf{n} \right) \cdot \delta v\]

\[- \text{div} \left(\mathbf{T} \cdot \mathbf{n} \right) \cdot \text{grad}_n \delta v + \text{div} \left[\text{grad} \delta v \cdot (\mathbf{T} \cdot \mathbf{n}) \right] - \delta v \cdot \text{div} \left(\mathbf{T} \cdot \mathbf{n} \right)\]

\[+ \text{div}^2 \left(\mathbf{T} \cdot \mathbf{n} \right) \cdot \delta v\]

\[= (\mathbf{T} \cdot n) \cdot (\text{grad}^2 \delta v \cdot \mathbf{n} \otimes \mathbf{n}) + (\mathbf{T} \cdot n) \cdot \text{grad}_n (\text{grad} \delta v \cdot \mathbf{n})\]

\[- \text{grad}_n \delta v \cdot [(\mathbf{T} \cdot n) \cdot \text{grad}_n \mathbf{T} \mathbf{n}] - \text{grad}_n \delta v \cdot [(\mathbf{T} \cdot n) \cdot \text{grad}_n \mathbf{T} \mathbf{n}]\]

\[- \text{div} \left(\mathbf{T} \cdot n \right) \cdot \text{grad}_n \delta v + \text{div} \left[\text{grad} \delta v \cdot (\mathbf{T} \cdot n) \right] - \delta v \cdot \text{div} \left(\mathbf{T} \cdot n \right)\]

\[+ \text{div}^2 \left(\mathbf{T} \cdot n \right) \cdot \delta v\]

\[= (\mathbf{T} \cdot n) \cdot (\text{grad}^2 \delta v \cdot \mathbf{n} \otimes \mathbf{n}) + \text{div} \left[(\mathbf{T} \cdot n) \cdot (\text{grad} \delta v \cdot \mathbf{n}) \right]\]

\[- \text{div} \left(\mathbf{T} \cdot n \right) \cdot (\text{grad} \delta v \cdot \mathbf{n})\]

\[- \text{grad}_n \delta v \cdot [(\mathbf{T} \cdot n) \cdot \text{grad}_n \mathbf{T} \mathbf{n}]\]

\[- \text{div} \left[\delta v \cdot [(\mathbf{T} \cdot n) \cdot \text{grad}_n \mathbf{T} \mathbf{n}] \right] + \delta v \cdot \text{div} \left[(\mathbf{T} \cdot n) \cdot \text{grad}_n \mathbf{T} \mathbf{n} \right]\]

\[- \text{div} \left(\mathbf{T} \cdot n \right) \cdot \text{grad}_n \delta v + \text{div} \left[\text{grad} \delta v \cdot (\mathbf{T} \cdot n) \right] - \delta v \cdot \text{div} \left(\mathbf{T} \cdot n \right)\]

\[+ \text{div}^2 \left(\mathbf{T} \cdot n \right) \cdot \delta v\]

\[= (\mathbf{T} \cdot n) \cdot (\text{grad}^2 \delta v \cdot \mathbf{n} \otimes \mathbf{n})\]

\[- \text{grad}_n \delta v \cdot [\text{div} \left(\mathbf{T} \cdot n \right) \otimes \mathbf{n} + (\mathbf{T} \cdot n) \cdot \text{grad}_n \mathbf{T} \mathbf{n} + \text{div} \left(\mathbf{T} \cdot n \right)]\]

\[+ \left[\text{div} \left(\mathbf{T} \cdot n \right) \otimes \mathbf{n} \right] + \text{div} \left[(\mathbf{T} \cdot n) \cdot \text{grad}_n \mathbf{T} \mathbf{n} \right] + \text{div}^2 \left(\mathbf{T} \cdot n \right) \cdot \delta v\]

\[+ \text{div} \left[- \delta v \cdot \text{div} \left(\mathbf{T} \cdot n \right) \otimes \mathbf{n} - \delta v \cdot (\mathbf{T} \cdot n) \cdot \text{grad}_n \mathbf{T} \mathbf{n} \right] + (\text{grad} \delta v \cdot \mathbf{n}) \cdot (\mathbf{T} \cdot n) \cdot (\text{grad} \delta v \cdot (\mathbf{T} \cdot n) - \delta v \cdot \text{div} \left(\mathbf{T} \cdot n \right)].\]
The integral over this is the last term of (1.99). We use integration by parts (1.125)

\[
(1.152) \quad \int_{\partial \mathcal{B}_t} \{(\mathbf{T} \cdot \mathbf{n}) \cdot grad^2 \delta \mathbf{v}\} \, dA \\
= \int_{\partial \mathcal{B}_t} \{(\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n}) \cdot (grad^2 \delta \mathbf{v} \cdot \mathbf{n} \otimes \mathbf{n}) \} \\
- [div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \otimes \mathbf{n} + (\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \cdot grad_t^T \mathbf{n} + div_t (\mathbf{T} \cdot \mathbf{n})] \cdot grad_n \delta \mathbf{v} \\
+ (div_t [div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \otimes \mathbf{n}] + div_t [(\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \cdot grad_t^T \mathbf{n}] + div_t^2 (\mathbf{T} \cdot \mathbf{n}) \\
- div_t n div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) - div_t n div_t ((\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n}) \cdot \delta \mathbf{v} \\
+ grad \delta \mathbf{v} \cdot (div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} + div_t (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n}) \} \, dA \\
+ \int_{\mathcal{L}_t} \{[- (\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \cdot grad_t^T \mathbf{n} \cdot \mathbf{m} - div_t (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{m}] \cdot \delta \mathbf{v} \\
+ grad \delta \mathbf{v} \cdot (div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} + div_t (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n}) \} \, dL \\
= \int_{\partial \mathcal{B}_t} \{(\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n}) \cdot (grad^2 \delta \mathbf{v} \cdot \mathbf{n} \otimes \mathbf{n}) \} \\
- [div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \otimes \mathbf{n} + (\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \cdot grad_t^T \mathbf{n} + div_t (\mathbf{T} \cdot \mathbf{n})] \cdot grad_n \delta \mathbf{v} \\
+ (div_t [div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \otimes \mathbf{n}] + div_t [(\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \cdot grad_t^T \mathbf{n}] + div_t^2 (\mathbf{T} \cdot \mathbf{n}) \\
- div_t n div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) - div_t n div_t ((\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n}) \cdot \delta \mathbf{v} \\
+ div_t [\delta \mathbf{v} \cdot (div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} + div_t (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n}) \} \\
- \delta \mathbf{v} \cdot div_t (div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} + div_t (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n}) \} \, dA \\
+ \int_{\mathcal{L}_t} \{[- (\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n}) \cdot grad_t^T \mathbf{n} \cdot \mathbf{m} - div_t (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{m}] \cdot \delta \mathbf{v} \\
+ grad \delta \mathbf{v} \cdot (div_t ((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} + div_t (\mathbf{T} \cdot \mathbf{n}) \cdot \mathbf{n}) \} \, dL.
by (1.125) \[\int_{\partial B_t} \left\{ \left(\mathcal{T} \cdot \nabla \in \mathbb{R}^{3 \times 3} \right) \cdot (\nabla^2 \delta \mathbf{v} : \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n}) \right\} dA \\
- \left[\text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \right) \otimes \mathbf{n} + \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \right) \cdot \text{grad}_1^T \mathbf{n} \right] + \text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \right) \\
+ \text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \right) \cdot \nabla \mathbf{n} \\
+ \left(\text{div}_1 \left[\text{div}_1 \left(\mathcal{T} \right) \cdot \text{grad}_1^T \mathbf{n} \right] + \text{div}_1 \left[\left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \right) \cdot \text{grad}_1^T \mathbf{n} \right] + \text{div}_1^2 \left(\mathcal{T} \cdot \mathbf{n} \right) \\
- \text{div}_1 \left(\mathcal{T} \right) \cdot \mathbf{n} \cdot \mathbf{n} - \text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \right) \cdot \delta \mathbf{v} \\
+ \text{div}_1 \left[\delta \mathbf{v} \cdot \left(\text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \right) \otimes \mathbf{n} \right) + \text{div}_1 \left[\left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \right) \cdot \text{grad}_1^T \mathbf{n} \right] + \text{div}_1^2 \left(\mathcal{T} \cdot \mathbf{n} \right) \\
- \delta \mathbf{v} \cdot \text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \right) - \text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \right) \cdot \delta \mathbf{v} \\
+ \text{div}_1 \left[\delta \mathbf{v} \cdot \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \right) \cdot \mathbf{n} \right] \\
+ \left(\delta \mathbf{v} \cdot \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \right) \right) \cdot \mathbf{m} \\
+ \text{grad} \delta \mathbf{v} \cdot \left(\mathcal{T} \cdot \mathbf{m} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} + \mathcal{T} \cdot \mathbf{m} \otimes \mathbf{n} \right) \right\} dA \\
= \int_{\partial B_t} \left\{ \left(\mathcal{T} \cdot \nabla \right) \cdot \left(\mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \right) \cdot (\nabla^2 \delta \mathbf{v} : \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n}) \right\} dA \\
- \left[\text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \right) \otimes \mathbf{n} + \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \right) \cdot \text{grad}_1^T \mathbf{n} \right] + \text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \right) \\
+ \text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \right) \cdot \nabla \mathbf{n} \\
+ \left(\text{div}_1 \left[\text{div}_1 \left(\mathcal{T} \right) \cdot \text{grad}_1^T \mathbf{n} \right] + \text{div}_1 \left[\left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \right) \cdot \text{grad}_1^T \mathbf{n} \right] + \text{div}_1^2 \left(\mathcal{T} \cdot \mathbf{n} \right) \\
- \text{div}_1 \left(\mathcal{T} \right) \cdot \mathbf{n} \cdot \mathbf{n} - \text{div}_1 \left(\mathcal{T} \cdot \mathbf{n} \right) \cdot \delta \mathbf{v} \\
+ \text{div}_1 \left[\delta \mathbf{v} \cdot \left(\mathcal{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \right) \right] \cdot \mathbf{m} \\
+ \text{grad} \delta \mathbf{v} \cdot \left(\mathcal{T} \cdot \mathbf{m} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} + \mathcal{T} \cdot \mathbf{m} \otimes \mathbf{n} \right) \right\} dA \\
+ \int_{\mathcal{L}_t} \left\{ \left(\mathcal{T} \cdot \nabla \right) \cdot \left(\mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \right) \cdot (\nabla^2 \delta \mathbf{v} : \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n}) \right\} dL + \text{grad} \delta \mathbf{v} \cdot \left(\mathcal{T} \cdot \mathbf{m} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} + \mathcal{T} \cdot \mathbf{m} \otimes \mathbf{n} \right) dL .
We further decompose the gradient of a vector field δv on the edge curves into its tangential part to the edge line and into its transversal part
\begin{equation}
\text{grad } \delta v = \text{grad}_L \delta v + \text{grad}_{\text{trans}} \delta v \quad \text{with } \text{grad}_L \delta v := \text{grad } \delta v \cdot t_L \otimes t_L
\end{equation}
the same as the divergence of a vector or tensor field
\[\text{div } \delta v = \text{div}_L \delta v + \text{div}_{\text{trans}} \delta v. \]
The transversal part can be composed as
\[\text{grad}_{\text{trans}} \delta v = \text{grad } \delta v \cdot n \otimes n + \text{grad } \delta v \cdot m \otimes m \]
since m and n span the normal plane of the edge curve.

We will furthermore need the following integral transformation from divergences of vector fields v defined on lines to their endpoint values\(^{19}\)
\begin{equation}
\int_{\mathcal{L}_i} \text{div}_L v \, dL = \sum_{P_i} (v \cdot t_L)_i + \int_{\mathcal{L}_i} (\text{div}_L n_L) (v \cdot n_L) \, dL
\end{equation}
with FRENET’s tangent t_L and normal n_L to the edge line \mathcal{L}_i, and the curvature of the edge $- \text{div}_L n_L$. The sum goes over all endpoints of the edges, and the suffix i indicates the points where it has to be evaluated. For straight parts of the edge, the last integral vanishes and hence n_L is not needed.

We continue with the above expression
\begin{equation}
\int_{\partial \mathcal{A}_i} \{(T \cdot n) \cdot \text{grad}^2 \delta v\} \, dA
\end{equation}
\[= \int_{\partial \mathcal{A}_i} \{ \left(\begin{array}{c} 4 \\ n \end{array} \right) \cdot \left(\begin{array}{c} 4 \\ n \otimes n \otimes n \end{array} \right) \cdot \left(\begin{array}{c} 4 \\ \text{grad}^2 \delta v \cdot n \otimes n \end{array} \right) \}
- [\text{div}_i \left(\begin{array}{c} 4 \\ T \cdot n \otimes n \end{array} \right) \otimes n + \left(\begin{array}{c} 4 \\ T \cdot n \otimes n \end{array} \right) \cdot \text{grad}_L T] n + \text{div}_i \left(\begin{array}{c} 4 \\ T \cdot n \end{array} \right)
+ \text{div}_i n \left(\begin{array}{c} 4 \\ T \cdot n \otimes n \otimes n \end{array} \right) + \text{div}_i n \left(\begin{array}{c} 4 \\ T \cdot n \otimes n \end{array} \right) \cdot \text{grad}_n \delta v
+ \left(\text{div}_i \left[\text{div}_i \left(\begin{array}{c} 4 \\ T \cdot n \otimes n \end{array} \right) \otimes n \right] + \text{div}_i \left(\begin{array}{c} 4 \\ T \cdot n \otimes n \end{array} \right) \cdot \text{grad}_L T] n + \text{div}_i \left(\begin{array}{c} 4 \\ T \cdot n \end{array} \right)
- \text{div}_i n \text{div}_i \left(\begin{array}{c} 4 \\ T \cdot n \otimes n \end{array} \right) - \text{div}_i n \text{div}_i \left(\begin{array}{c} 4 \\ T \cdot n \end{array} \right) \cdot n + 2 \text{div}_i n^2 \left(\begin{array}{c} 4 \\ T \cdot n \end{array} \right)
- \text{div}_i (\text{div}_i n \left(\begin{array}{c} 4 \\ T \cdot n \otimes n \otimes n + \text{div}_i n \left(\begin{array}{c} 4 \\ T \cdot n \otimes n \end{array} \right) \right) \cdot \delta v \right} dA
\]

\(^{19}\)see BRAND (1947) Chapt. VI
The following product rules will be applied

1) \(\text{div}_i (\nabla \cdot \mathbf{n}) = \text{div}_i (\nabla \cdot \mathbf{n}) + \nabla \cdot \text{grad}_i \mathbf{n} \)

2) \(\text{div}_i (\nabla \cdot \mathbf{n} \otimes \mathbf{n}) = \text{div}_i (\nabla \cdot \mathbf{n} \otimes \mathbf{n} + \nabla \cdot \text{grad}_i \mathbf{n} \otimes \mathbf{n}) \)

3) \(\text{div}_i (\text{div}_i (\nabla \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n})) = \text{div}_i (\text{div}_i (\nabla \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n})) \)
4) \(\text{div} \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \nabla \delta v = \text{div} \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \)

5) \(\text{div} \left[\text{div} \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right] = \text{div} \left[\left(\text{div} \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right) + 2 \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right] \)

\[= \text{div} \left(\text{div} \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right) + 2 \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \]

6) \(\text{div} \left[\left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \right] \cdot \nabla \delta v \)

\[= \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v + \text{grad} \cdot \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \]

\[= \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v + \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \text{grad} \cdot \nabla \delta v \]

7) \(\text{grad} \cdot \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \)

\[= \text{div} \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v + \text{grad} \cdot \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \]

8) \(\text{div} \left[\left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \right] \cdot \nabla \delta v \)

\[= \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v + \text{grad} \cdot \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \]

9) \(\text{div} \left(\text{grad} \cdot \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right) \)

\[= \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v + \text{grad} \cdot \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \]

10) \(\text{div} \left\{ \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \delta v \right\} \)

\[= \text{div} \left(\left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \delta v \right) \]

11) \(\text{div} \left(\left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \delta v \right) \)

We continue with the above equation

\[\int_{\partial \Omega} \left\{ \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right\} dA \]

\[= \int_{\partial \Omega} \left\{ \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right\} \]

\[- \left[\text{div} \left(\frac{\partial}{\partial t} \cdot 2 \nabla \right) \cdot \left(4 \text{grad} \cdot \delta v + 2 \text{div} \cdot \nabla \delta v \right) \right] \cdot \text{grad} \delta v \]

\[+ \left[\text{div} \left(\frac{\partial}{\partial t} \cdot \left(2 \text{grad} \cdot \delta v - 2 \text{div} \cdot \nabla \delta v \right) \right) \]

\[+ 2 \nabla \cdot \text{grad} \cdot \delta v \]

\[+ \text{grad} \cdot \text{grad} \cdot \delta v + \left(\text{div} \cdot \nabla \delta v \right)^2 \]

\[- \left[\text{div} \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right] \cdot \text{grad} \delta v \]

\[+ \left[\text{div} \left(\frac{\partial}{\partial t} \cdot \left(2 \text{grad} \cdot \delta v - 2 \text{div} \cdot \nabla \delta v \right) \right) \]

\[+ 2 \nabla \cdot \text{grad} \cdot \delta v \]

\[+ \text{grad} \cdot \text{grad} \cdot \delta v + \left(\text{div} \cdot \nabla \delta v \right)^2 \]

\[- \left[\text{div} \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right] \cdot \text{grad} \delta v \]

\[+ \left[\text{div} \left(\frac{\partial}{\partial t} \cdot \left(2 \text{grad} \cdot \delta v - 2 \text{div} \cdot \nabla \delta v \right) \right) \]

\[+ 2 \nabla \cdot \text{grad} \cdot \delta v \]

\[+ \text{grad} \cdot \text{grad} \cdot \delta v + \left(\text{div} \cdot \nabla \delta v \right)^2 \]

\[- \left[\text{div} \left(\frac{\partial}{\partial t} \cdot \nabla \right) \cdot \nabla \delta v \right] \cdot \text{grad} \delta v \]

\[+ \left[\text{div} \left(\frac{\partial}{\partial t} \cdot \left(2 \text{grad} \cdot \delta v - 2 \text{div} \cdot \nabla \delta v \right) \right) \]

\[+ 2 \nabla \cdot \text{grad} \cdot \delta v \]

\[+ \text{grad} \cdot \text{grad} \cdot \delta v + \left(\text{div} \cdot \nabla \delta v \right)^2 \]
We substitute (1.150) and (1.155) into (1.99)

\[
\int_{\mathcal{B}_t} \mathbf{T} \cdot : \mathbf{n} \otimes \mathbf{n} \otimes \text{grad} \mathbf{T} \mathbf{n} + \text{div}_t \left(\mathbf{T} \cdot \mathbf{n} \right) \cdot \delta \mathbf{v} \, dA
\]

\[
+ \int_{\mathcal{L}_t} \left\{ \left[\mathbf{T} \cdot : \mathbf{T} \cdot : \mathbf{n} \otimes \mathbf{n} \otimes \text{grad} \mathbf{T} \mathbf{n} \mathbf{n} \right] \cdot \delta \mathbf{v} \right\} d\mathbf{\mathcal{L}}
\]

\[
- \sum_{\mathcal{P}_t} \left[\left[\mathbf{T} \cdot : \mathbf{t}_{\mathcal{P}_t} \otimes \mathbf{m} \otimes \mathbf{n} \right] \cdot \delta \mathbf{v} \right].
\]

\[
\text{(1.99) } \int_{\mathcal{B}_t} \mathbf{T} \cdot : \mathbf{grad}^3 \delta \mathbf{v} \, d\mathbf{V}
\]

\[
= - \int_{\mathcal{B}_t} \text{div}_t \mathbf{T} \cdot \delta \mathbf{v} \, d\mathbf{V}
\]

\[
+ \int_{\partial \mathcal{B}_t} \left\{ \left[\mathbf{T} \cdot : \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \right] \cdot \left(\mathbf{grad}^2 \delta \mathbf{v} \cdot \mathbf{n} \otimes \mathbf{n} \right) \right\}
\]

\[
- \left[\text{div}_t \mathbf{T} \cdot \mathbf{2} \mathbf{n} + \text{div}_t \mathbf{T} \cdot \mathbf{n} + \mathbf{T} \cdot \left(4 \text{grad}_t \mathbf{n} + 2 \text{div}_t \mathbf{n} \otimes \mathbf{n} \right) \right] \cdot \delta \mathbf{v}
\]

\[
+ \left[\text{div}_t \mathbf{T} \cdot \mathbf{2} \left(\text{grad}_t \mathbf{n} - \text{div}_t \mathbf{n} \otimes \mathbf{n} \right) + \text{div}_t \mathbf{T} \cdot \left(\text{grad}_t \mathbf{n} - \text{div}_t \mathbf{n} \otimes \mathbf{n} \right) \right]
\]

\[
+ \left[\mathbf{T} \cdot : \left(2 \mathbf{n} \otimes \text{grad}_t \mathbf{n} \cdot \mathbf{grad}_t \mathbf{n} + \text{grad}_t \mathbf{grad}_t \mathbf{n} \right)
\]

\[
+ \left(\text{div}_t \mathbf{n} \right)^2 \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} - 3 \text{div}_t \mathbf{n} \text{grad}_t \mathbf{n} \otimes \mathbf{n}
\]

\[
+ \text{grad}_t \mathbf{T} \cdot : \mathbf{n} \otimes \mathbf{n} \otimes \text{grad}_t \mathbf{T} \mathbf{n} + \left(\text{div}_t \mathbf{T} + \text{div}_t \mathbf{T} + \text{div}_t \mathbf{T} \right) \cdot \mathbf{n} \cdot \delta \mathbf{v} \right\} dA
\]

\[
+ \int_{\mathcal{L}_t} \left\{ \left[\mathbf{T} \cdot : \left(\mathbf{n} \otimes \mathbf{n} \otimes \text{grad}_t \mathbf{n} \mathbf{n} - \mathbf{m} \otimes \text{grad}_t \mathbf{n} \right)
\]

\[
+ \text{div}_t \mathbf{n} \mathbf{m} \otimes \mathbf{n} \otimes \mathbf{n} + \text{div}_t \mathbf{n} \mathbf{n} \mathbf{m} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \cdot \mathbf{n}
\]

\[
+ \text{div}_t \mathbf{n} \mathbf{n} \cdot \mathbf{m} \otimes \mathbf{n}
\]
− \text{div}_{\mathcal{F}} (m \otimes n \otimes n - \text{grad}_{\mathcal{F}} (m \otimes n - m \otimes \text{grad}_{\mathcal{F}} n))

− (\text{div} (\mathcal{T}) + \text{div}_{\mathcal{I}} (\mathcal{T}) + \text{div}_{\mathcal{F}} (\mathcal{T})) \cdot (m \otimes n) \cdot \delta v

+ \left((\mathcal{T} \cdot : (m \otimes n \otimes n \otimes n) + (\mathcal{T} \cdot : m \otimes n) \text{grad}_{\mathcal{L}} \delta v) \right) dL

+ \sum_{\mathcal{P}_i} \left[(\mathcal{T} \cdot : (m \otimes n) \delta v) \right]

and add this to the virtual power of the second gradient (1.129) to obtain the total virtual power for the third-gradient material

\begin{align*}
\text{\text{(1.156)}} & \quad \int_{\mathcal{B}_i} \left\{ \left(\mathcal{T} \cdot \delta v + \left(\text{grad} \delta v + \left(\mathcal{T} \cdot : \text{grad}^2 \delta v + \mathcal{T} \cdot : \text{grad}^3 \delta v \right) \right) dV \\
& = \int_{\mathcal{B}_i} \left(\mathcal{T} - \text{div} \mathcal{T} + \text{div}_{\mathcal{I}} \mathcal{T} + \text{div}_{\mathcal{F}} \mathcal{T} \right) \cdot \delta v dV \\
& + \int_{\mathcal{B}_i} \left\{ (\mathcal{T} \cdot : (n \otimes n \otimes n)) \cdot (\text{grad}^2 \delta v \cdot n \otimes n) \right\}
\end{align*}

\begin{align*}
& + \left[(\mathcal{T} - 2 \text{div}_{\mathcal{I}} \mathcal{T} - \text{div} \mathcal{T}) \cdot n - \mathcal{T} \cdot (4 \text{grad}, n + 2 \text{div}_{\mathcal{I}} n \otimes n) \right] \cdot (\text{grad} \delta v \cdot n \otimes n) \\
& + \left[\left(\mathcal{T} - \text{div} \mathcal{T} - \text{div}_{\mathcal{I}} \mathcal{T} + \text{div}_{\mathcal{F}} \mathcal{T} + \text{div}_{\mathcal{F}} \mathcal{T} \right) \cdot n \right] \\
& + \left(\mathcal{T} \cdot (\text{div}_{\mathcal{I}} n \otimes n - \text{grad}_{\mathcal{F}} n) + (2 \text{div}_{\mathcal{I}} \mathcal{T} + \text{div} \mathcal{T}) \cdot (\text{grad}\, n - \text{div}_{\mathcal{I}} n \otimes n) \right) \\
& + \left(\mathcal{T} \cdot : (2 n \otimes \text{grad}_{\mathcal{F}} n \cdot \text{grad}_{\mathcal{F}} n + \text{grad}_{\mathcal{F}} \text{grad}_{\mathcal{F}} n) \\
& + (\text{div}_{\mathcal{I}} n)^2 n \otimes n \otimes n - 3 \text{div}_{\mathcal{I}} n \text{grad}_{\mathcal{F}} n \otimes n) \\
& + \text{grad}_{\mathcal{I}} \mathcal{T} \cdot : (n \otimes n \otimes \text{grad}_{\mathcal{F}} n) \right] \cdot \delta v \right\} dA
\end{align*}

\begin{align*}
& + \int_{\mathcal{F}} \left\{ (\mathcal{T} \cdot : (-n \otimes n \otimes \text{grad}_{\mathcal{F}} n \cdot m - m \otimes \text{grad}_{\mathcal{F}} n) \\
& + \text{div}_{\mathcal{F}} n m \otimes n \otimes n + \text{div}_{\mathcal{F}} n m \otimes n \otimes (-n + n \otimes n \cdot n_{\mathcal{F}} + n_{\mathcal{F}}) \\
& - \text{grad}_{\mathcal{F}} m \otimes n - m \otimes \text{grad}_{\mathcal{F}} n \\
& + \left(\mathcal{T} - \text{div} \mathcal{T} - \text{div}_{\mathcal{I}} \mathcal{T} - \text{div}_{\mathcal{F}} \mathcal{T} \right) \cdot m \otimes n \right] \cdot \delta v \\
& + \left(\mathcal{T} \cdot : (m \otimes n \otimes n \otimes n + m \otimes n \otimes I) \right) \cdot \text{grad}_{\mathcal{F}} \delta v \right\} dL
\end{align*}
This can be brought into a compact form

\[
\int_{\mathcal{B}_i} \left(\mathbf{T} \cdot \delta \mathbf{v} + \mathbf{T} \cdot \mathbf{r} \mathbf{g} \mathbf{d} \right) dV
\]

\[
= \int_{\mathcal{B}_i} (\mathbf{b}_3 - \mathbf{x}^{**}) \cdot \delta \mathbf{v} \, dm
\]

\[
+ \int_{\partial \mathcal{B}_i} \left\{ \mathbf{t}_3 \cdot \delta \mathbf{v} + \mathbf{T}_3 \cdot \mathbf{r} \mathbf{g} \mathbf{d} \cdot \mathbf{n} \cdot \mathbf{n} + \mathbf{s}_3 \cdot (\mathbf{g} \mathbf{d} \mathbf{g} \mathbf{d} \cdot \mathbf{n} \cdot \mathbf{n}) \right\} \, dA
\]

\[
+ \int_{\mathcal{L}_i} \left\{ \mathbf{l}_3 \cdot \delta \mathbf{v} + \mathbf{L}_3 \cdot \mathbf{g} \mathbf{d} \cdot \mathbf{n} \cdot \mathbf{n} \right\} \, dL
\]

\[
+ \sum_{\mathcal{P}_i} (\mathbf{P} \cdot \delta \mathbf{v})_i
\]

with

- the body force

\[
\mathbf{b}_3 := \frac{\left(\mathbf{t}^{(1)} \cdot \mathbf{r} \mathbf{g} \mathbf{d} \mathbf{d} - \mathbf{t}^{(2)} \right)}{\rho} + \mathbf{x}^{**}
\]

and the following surface and line tractions

- the resulting surface force density

\[
\mathbf{t}_3 := \left(\mathbf{t}^{(2)} - \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \right) \cdot \mathbf{n}
\]

\[
+ \mathbf{t}^{(3)} \cdot \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \cdot \mathbf{n}
\]

\[
+ \mathbf{t}^{(4)} \cdot \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \cdot \mathbf{n} + \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \cdot \mathbf{n} + \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \cdot \mathbf{n} + \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \cdot \mathbf{n}
\]

\[
- 3 \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \cdot \mathbf{n} + \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \cdot \mathbf{n} + \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \cdot \mathbf{n}
\]

with the structural surface tensors

\[
\mathbf{M} := \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} - \mathbf{d} \mathbf{v} \mathbf{d} \mathbf{v} \cdot \mathbf{n}
\]
(1.160) \[
\mathcal{M}^3 := 2 \mathbf{n} \otimes \text{grad}_t \mathbf{n} \cdot \text{grad}_t \mathbf{n} + \text{grad}_t \mathbf{n} + (\text{div}_t \mathbf{n})^2 \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \\
- 3 \text{div}_t \mathbf{n} \text{grad}_t \mathbf{n} \otimes \mathbf{n}
\]

(1.161) \[
\mathcal{M}^4 := \mathbf{n} \otimes \mathbf{n} \otimes \text{grad}_t^T \mathbf{n}
\]

- the resulting surface couple force density

(1.162) \[
\mathcal{T}^3 := (\mathbf{T} - 2 \text{div}_t \mathbf{T} - \text{div}_t^4 \mathbf{T}) \cdot \mathbf{n} - (4 \text{grad}_t \mathbf{n} + 2 \text{div}_t \mathbf{n} \mathbf{n} \otimes \mathbf{n})
\]

with the surface structure tensor

(1.163) \[
\mathcal{N}^2 := 4 \text{grad}_t \mathbf{n} + 2 \text{div}_t \mathbf{n} \mathbf{n} \otimes \mathbf{n}
\]

- the resulting surface hypercouple force density

(1.164) \[
\mathcal{S}^3 := (\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n}
\]

- the resulting line force density

(1.165) \[
\mathcal{L}^3 := - \mathbf{n} \otimes \mathbf{n} \otimes \text{grad}_t^T \mathbf{n} \cdot \mathbf{m} - \mathbf{m} \otimes \text{grad}_t \mathbf{n}
\]

- the resulting line couple force density

(1.166) \[
\mathcal{L}^3 := (\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n}
\]

with the line structure tensor

(1.167) \[
\mathcal{L}^4 := \mathbf{m} \otimes \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} + \mathbf{m} \otimes \mathbf{n} \otimes \mathbf{I}
\]

wherein the product \((\mathbf{T} \cdot \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n}) \cdot \text{grad}_m \delta \mathbf{v}\) is zero because of the orthogonality between \(\mathbf{m}\) and \(\mathbf{n}\).
and the resulting point forces

\[p : = \dot{T} : \cdot t \otimes m \otimes n. \]

The structural tensors on the surface are odd in \(n \) so that the reaction principle holds for the surface tractions

\[-t_3(n) = t_3(-n) \]

\[-T_3(n) = T_3(-n). \]

For plane regions of the surface the structural tensors \(\mathcal{M}, \mathcal{M}, \mathcal{M}, \mathcal{N} \) vanish altogether, so that only the terms

\[t_3 = (\mathcal{T} - \text{div}^{(3)} \mathcal{T} - \text{div}^{(4)} \mathcal{T} + \text{div}^{(4)} \mathcal{T} + \text{div}^{(4)} \mathcal{T} + \text{div}^{(4)} \mathcal{T}) \cdot n \]

\[T_3 = (\mathcal{T} - 2 \text{div}^{(4)} \mathcal{T} - \text{div}^{(4)} \mathcal{T}) \cdot n = (\mathcal{T} - 3 \text{div}^{(4)} \mathcal{T} - \text{div}^{(4)} \mathcal{T}) \cdot n \]

remain in the virtual power density.

In the general case, (1.157) for a constant \(\delta v \) gives the force in the form

\[f = \int_{\mathcal{B}_1} b_3 \, dm + \int_{\partial \mathcal{B}_1} t_3 \, dA + \int_{\mathcal{L}_l} l_3 \, dL + \sum_{\mathcal{P}_i} p_i. \]

For \(\delta v = \delta \omega \times x \) we have to consider a term in (1.157) of the following form

\[L_3 \cdot \text{grad}_{\text{trans}} \delta v = L_3 \cdot \delta \omega \times (I - n \otimes n) \]

\[= T_{32} \delta \omega_1 - T_{31} \delta \omega_2 + (T_{21} - T_{12}) \delta \omega_3 \]

for an appropriate orthonormal vector basis \(\{e_1, e_2, n\} \). This is linear in \(n \) and gives rise to the ansatz

\[2 \text{axi}_{\text{trans}}(L_3) \cdot \delta \omega = L_3 \cdot \delta \omega \times (I - n \otimes n) \]

for every vector \(\delta \omega \), so that \(2 \text{axi}_{\text{trans}}(L_3) = L_{32} e_1 - L_{31} e_2 + (L_{21} - L_{12}) n \) in analogy to (1.137.3).

For \(\delta v = \delta \omega \times x \) we obtain the torque from (1.157) using (1.89)

\[m_o = \int_{\mathcal{B}_1} x \times b_3 \, dm + \int_{\partial \mathcal{B}_1} (x \times t_3 + 2 \text{axi}_n T_3) \, dA + \int_{\mathcal{L}_l} (x \times l_3 + 2 \text{axi}_{\text{trans}} L_3) \, dL + \sum_{\mathcal{P}_i} (x \times p_i). \]

The next theorem is an alternative form of EULER’s laws of motion (1.73), (1.74) using the above equations.
Theorem 1.24 (generalized EULER’s laws of motion)
A motion of the body is dynamically admissible if and only if the laws of motion

\[
\int_{\mathcal{B}_i} b_3 \, dm + \int_{\mathcal{B}_i} t_3 \, dA + \int_{\mathcal{L}_i} l_3 \, dL + \sum_{\mathcal{P}_i} p_i = \int_{\mathcal{B}_i} x'' \, dm
\]

and

\[
\int_{\mathcal{B}_i} x \times b_3 \, dm + \int_{\mathcal{B}_i} (x \times t_3 + 2 ax_i n \times T_3) \, dA \\
+ \int_{\mathcal{L}_i} (x \times l_3 + 2 ax_i \times L_3) \, dL + \sum_{\mathcal{P}_i} (x \times p) \, = \int_{\mathcal{B}_i} x \times x'' \, dm
\]

hold for the body for one observer (and hence for all).

By use of (1.92), (1.93), and (1.156) we obtain the field formulations.

Theorem 1.25 (extended CAUCHY’s laws)
A motion of the body is dynamically admissible if and only if

\[
\text{div} \, T^{(2)} - \text{div} \, T^{(3)} + \text{div} \, T^{(4)} + \rho b_3 = \rho x''
\]

and

\[
\frac{\text{div} \, T^{(2)}}{T^{(2)}} = \frac{\text{div} \, T^{(2)}}{T^{(2)}}
\]

hold everywhere in the body.

We are now able to reformulate the principle of virtual power extending Theorem 1.19 by using (1.157).

Theorem 1.26 (integral version of PVP)
A motion of the body is dynamically admissible if and only if the balance of virtual power holds in the form

\[
\int_{\mathcal{B}_i} (b_3 - x'') \cdot \delta v \, dm \\
+ \int_{\partial \mathcal{B}_i} \{t_3 \cdot \delta v + T_3 \cdot (\text{grad} \, \delta v \cdot n \otimes n) + s_3 \cdot (\text{grad}^2 \, \delta v \cdot n \otimes n)\} \, dA \\
+ \int_{\mathcal{L}_i} \{l_3 \cdot \delta v + L_3 \cdot \text{grad}_{\text{trans}} \, \delta v\} \, dL + \sum_{\mathcal{P}_i} (p \cdot \delta v)_i \\
= \int_{\mathcal{B}_i} \left(\frac{\text{div} \, T}{T} \otimes \text{sym} \, \text{grad} \, \delta v + \frac{\text{div} \, T}{T} : \text{grad}^2 \, \delta v + \frac{\text{div} \, T}{T} : \text{grad}^3 \, \delta v\right) \, dV
\]

for all vector fields \(\delta v \in \delta \mathcal{V}\) for one observer (and hence for all).

Proof. From the previous Theorem 1.25 we know that a motion is admissible if the local balances of forces (1.178) and torques (1.93) hold. Let us start with (1.178).
This is valid everywhere in the body iff for every differentiable vector field δv

\[
\mathbf{T} \cdot \delta v = 0
\]

holds everywhere, or iff

\[
\int_{\mathcal{B}_i} \mathbf{T} \cdot \delta v \, dV = 0
\]

holds for all fields $\delta v \in \delta \mathcal{V}$. By (1.157) this equals

\[
\int_{\mathcal{B}_i} (\mathbf{b}_3 - \mathbf{x}^{**}) \cdot \delta v \, dm
\]

\[
+ \int_{\partial \mathcal{B}_i} \left\{ \mathbf{t}_3 \cdot \delta v + \mathbf{T}_3 \cdot \left(\text{grad} \, \delta v \cdot \mathbf{n} \otimes \mathbf{n} \right) + \mathbf{s}_3 \cdot \left(\text{grad}^2 \, \delta v \cdot \mathbf{n} \otimes \mathbf{n} \right) \right\} \, dA
\]

\[
+ \int_{\mathcal{L}_i} \left\{ \mathbf{l}_3 \cdot \delta v + \mathbf{L}_3 \cdot \{ \text{grad}_{\text{trans}} \, \delta v \} \right\} \, dL + \sum_{\mathcal{P}_i} (\mathbf{p} \cdot \delta v)_i
\]

\[
= \int_{\mathcal{B}_i} \left(\mathbf{T} \cdot \text{grad} \, \delta v + \mathbf{T} \cdot \text{grad}^2 \, \delta v + \mathbf{T} \cdot \text{grad}^3 \, \delta v \right) \, dV.
\]

In addition, the balance of moment of momentum (1.93) is fulfilled iff

\[
\mathbf{T} \cdot \text{skw} \, \text{grad} \, \delta v = 0
\]

or iff

\[
\int_{\mathcal{B}_i} \mathbf{T} \cdot \text{skw} \, \text{grad} \, \delta v \, dV = 0
\]

holds for all fields $\delta v \in \delta \mathcal{V}$. We subtract this from the above equation and obtain (1.179), which completes our proof; $q.e.d.$

By identifying δv with the current velocity field $\mathbf{v} \in \delta \mathcal{V}$ in (1.179), we obtain the balance of power.
Theorem 1.27 (global work balance)

If a motion of the body is dynamically admissible then the balance of power states that the power of the external loads equals the change of the kinetic energy plus the stress power

\[
\int_{\mathcal{B}_t} \mathbf{b} \cdot \mathbf{v} \, dm + \int_{\partial \mathcal{B}_t} \left[\mathbf{t}_3 \cdot \mathbf{v} + \mathbf{T}_3 \cdot (\text{grad} \, \mathbf{v} \cdot \mathbf{n} \otimes \mathbf{n}) + \mathbf{s}_3 \cdot (\text{grad}^2 \mathbf{v} \cdot \mathbf{n} \otimes \mathbf{n}) \right] \, dA
\]

\[
+ \int_{\mathcal{L}_t} (\mathbf{l}_3 \cdot \mathbf{v} + \mathbf{L}_3 \cdot \text{grad}_{\text{trans}} \mathbf{v}) \, dL + \sum_{\mathcal{P}_t} (\mathbf{p} \cdot \mathbf{v})_i
\]

\[
= \left(\int_{\mathcal{B}_t} \frac{1}{2} \mathbf{v} \cdot \mathbf{v} \, dm \right)^* + \int_{\mathcal{B}_t} \left(\mathbf{T} \cdot \text{sym} \, \text{grad} \mathbf{v} + \mathbf{T} \cdot \text{grad}^2 \mathbf{v} + \mathbf{T} \cdot \text{grad}^3 \mathbf{v} \right) \, dV
\]

for the body.

This balance gives only a necessary, but not a sufficient condition for the admissibility of a motion.

Boundary conditions

From Theorem 1.26 we also see the dynamic or NEUMANN boundary conditions prescribing the surface tractions, namely

- on the surface of the body \(\partial \mathcal{B}_t \)
 - the vector field of the tractions
 \[
 \mathbf{t}_{3\text{pre}} = \mathbf{t}_3
 \]
 - the vector field of the surface couple forces
 \[
 \mathbf{t}_{\text{a pre}} = \mathbf{T}_3 \cdot \mathbf{n}
 \]
 - since \(\text{grad}_n \delta \mathbf{v} \) has only a normal component in its second entry
 - the dyadic tensor field of the double tractions in normal direction in the following form
 \[
 \mathbf{s}_{3\text{pre}} = \mathbf{s}_3
 \]
- on the edges \(\mathcal{L}_t \) one can prescribe the line forces \(\mathbf{l}_3 \) and the transversal part of \(\mathbf{L}_3 \) which can be decomposed into the \(\mathbf{n} \) and \(\mathbf{m} \)--direction
- in the vertices \(\mathcal{P}_t \) one can prescribe the point forces \(\mathbf{p}_i \).

The DIRICHLET boundary conditions are then the following prescriptions

- on the surface of the body \(\partial \mathcal{B}_t \)
 - the displacement field \(\mathbf{u} \)
 - its first normal gradient \(\text{grad}_n \mathbf{u} = \text{grad} \, \delta \mathbf{v} \cdot \mathbf{n} \otimes \mathbf{n} \)
• the second one in the normal direction through $\text{grad}^2 \delta v \cdot \mathbf{n} \otimes \mathbf{n}$
- on the edges L_i
• the displacement field \mathbf{u}
• and its transversal part $\text{grad}_{\text{trans}} \mathbf{u}$, which can be decomposed into \mathbf{n} and \mathbf{m}-direction
- on the vertices P_i
• the displacements \mathbf{u}_i of the vertices.

Of course, these conditions must be compatible in the intersections of these areas.

Naturally, one can also apply mixed boundary conditions of the two types.
2. Material Theory of Second-Gradient Materials

This chapter is mainly based on

In the preceding chapter we described gradient materials and, in particular, second-gradient materials \((K \equiv 2)\). In what follows, we will consider the material theory for this class of materials, and particularize it for elasticity and plasticity.

While there is already a high number of contributions to gradient elasticity and plasticity within the linear format, publications on the same class of materials for large deformations are still limited, and among the few one will mainly find particular cases rather than a general theory.

The starting point for introduction of the stresses here is the internal stress power. Once having defined appropriate material stress and strain variables, we consider gradient elasticity. After working out the effect of a change of the reference placement, the concept of elastic isomorphy allows us to define elastic symmetry transformations. With these concepts we are able to distinguish isotropic and anisotropic elasticity. As an example we give a linear form of the gradient elasticity.

These are the variables (fields) that are needed for such a theory:

- the specific body force \(\mathbf{b}\) after (1.128)
- the second-order stresses \(\mathbf{\mathbf{T}}\)
- the third-order hyperstresses \(\mathbf{\mathbf{T}}\)

and in the case of kinematical or DIRICHLET boundary conditions

- the displacements on the boundary \(\mathbf{u}\)
- and the normal gradient of the displacements \(\text{grad}_n \mathbf{u}\)

or in the case of dynamic or NEUMANN boundary conditions

- the tractions prescribed on the boundary after (1.142) \(\mathbf{t}_{\text{presc}}\)

\(^{20}\) see also BERTRAM (2013)
the tensor field of the double tractions in normal direction after (1.143) $s_{\text{presc}} \otimes n$
or an appropriate mixture of the two types.

For the specific body force we expect a gravitational or a magnetic law. For the two stress
tensors T^2 and T^3 material laws are needed. We will further on write $T : = T^2$ for the
CAUCHY stresses to facilitate the notations.

To find appropriate forms of such material laws is the subject of material theory within contin-
umum mechanics. They are subject of certain axioms called principles of material theory such as the

- *Principle of Determinism*
- *Principle of Local Action*
- *Principle of EUCLIDean Invariance* (or Objectivity)
- *Principle of Invariance under Rigid Body Modifications*
- *Principle of Thermodynamical Consistency*

and the like21. These principles can be straightforward extended from simple materials to
gradient materials, as we will show later.

The *Principle of EUCLIDean Invariance* is already fulfilled by the statement of Theorem 1.17
that the higher-order stress tensors are objective. The other principles, however, lead to some
concretization of the constitutive format.

21 see TRUESDELL/NOLL (1965), BERTRAM (2005), and many other books.
Second-Order Kinematics

A non-trivial problem in finite deformation theory is the choice of appropriate and practical third-order variables. In contrast to POLIZZOTTO (2009), CIARLETTA/MAUGIN (2011), and many others, we use material variables and reduced forms. This saves us from introducing objective time derivatives for the stresses and strains.

Some authors like TOUPIN (1962), DUVAUT (1964), CHEVERTON/BEATTY (1975), SVENDSEN/NEFF/MENZEL (2009), and HWANG et al. (2002) use the gradient of GREEN’s strain tensor (0.54) or of the right CAUCHY-GREEN tensor (0.52) as a higher-order material variable. Although principally equivalent to our procedure, it turns out that this choice leads to rather complicated expressions in elasto-plasticity even if applied only for the isotropic case.

In WANG (1973), TESTA/VIANELLO (2005), and PODIO-GUIDUGLI/VIANELLO (2013) the symmetry properties of gradient materials are also investigated (in the context of elastic fluids). These authors, however, apply them to variables which are neither spatial nor material and, thus, inappropriate for material modelling of solids.

We will next provide the necessary kinematical variables for a second-gradient theory.

With respect to the natural bases of a spatial coordinate system \(\{ \phi_i \} \) and a material one \(\{ \Psi^i \} \) the deformation gradient can be calculated as

\[
F = \frac{\partial \phi^k}{\partial \Psi^i} \, r_{\phi^k} \otimes r_{\Psi^i}.
\]

With the transformation of the nablas are after (0.45) we get for the gradient of any tensor field \(\phi \) the transformations

\[
\text{Grad} \phi = (\text{grad} \phi) \, F \quad \text{and} \quad \text{grad} \phi = (\text{Grad} \phi) \, F^{-1}
\]

where it is understood that \(\phi \) is in the LAGRANGEan description if \(\text{Grad} \) is applied, and in the EULERean one if \(\text{grad} \) is.

In particular, we have the identities

\[
\text{grad} x = x \otimes \nabla = I \quad \Rightarrow \quad \text{grad} \text{grad} x = 0
\]

\[
\text{Grad} x_\theta = x_\theta \otimes \nabla_\theta = I \quad \Rightarrow \quad \text{Grad} \text{Grad} x_\theta = 0
\]

with \(x \) being the position vector in the current placement and \(x_\theta \) in the reference placement. The second gradient of the motions is the gradient of the deformation gradient

\[
\text{Grad Grad} \chi = \text{Grad} F = \chi \otimes \nabla_\theta \otimes \nabla_\theta
\]

which is a triadic (field) with the right subsymmetry by definition.

We will later-on need the differential of the inverse of the deformation gradient. First we note that the product rule gives
\[d(F^{-1} \cdot F) = 0 = dF^{-1} \cdot F + F^{-1} \cdot dF \]

so that

(2.6) \[dF^{-1} = -F^{-1} \cdot dF \cdot F^{-1}. \]

With this representation we obtain

\[d(F^{-1}) = \text{Grad} \; F^{-1} \cdot dx_0 \]
\[= -F^{-1} \cdot dF \cdot F^{-1} \]
\[= -F^{-1} \cdot (\text{Grad} \; F \cdot dx_0) \cdot F^{-1} \]
\[= -F^{-1} \cdot [(\text{Grad} \; F)^t \cdot F^{-1}]^t \cdot dx_0 \]
\[= -F^{-1} \cdot [(\text{Grad} \; F) \cdot F^{-1}]^t \cdot dx_0. \]

Thus

(2.7) \[\text{Grad} \; F^{-1} = -F^{-1} \cdot [(\text{Grad} \; F) \cdot F^{-1}]^t. \]

Later, we will use the following expression for the gradient of the product of two second-order tensor fields \(T \) and \(S \)

(2.8) \[\text{Grad} (S \cdot T) = S \cdot \text{Grad} \; T + [(\text{Grad} \; S)^t \cdot T]^t. \]

This can be verified by the following calculation

\[\text{Grad} (S \cdot T) = (S \cdot T) \otimes \nabla_L = S \cdot \text{Grad} \; T + \downarrow S \cdot T \otimes \nabla_L \]

where the arrows indicate the term to which nabla has to be applied. The last term is with respect to an orthonormal basis

\[\downarrow S \cdot T \otimes \nabla_L = S_{ij,k} T_{jm} e_i \otimes e_m \otimes e_k \]

while

\[[(\text{Grad} \; S)^t \cdot T]^t = [(S_{ij,k} e_i \otimes e_j \otimes e_k)^t \cdot T]^t = [S_{ij,k} e_i \otimes e_k \otimes e_j T]^t \]
\[= [S_{ij,k} T_{jm} e_i \otimes e_k \otimes e_m]^t = S_{ij,k} T_{jm} e_i \otimes e_m \otimes e_k \]

gives the same. An analogous result holds also for the gradient in the EULERian description.

The second velocity gradient can be related to the material time derivative of a material deformation tensor

(2.9) \[\text{grad} \; \text{grad} \; \mathbf{v} = \text{grad} \; \mathbf{L} \]

with (0.51) \[= \text{grad} \; (\mathbf{F}^* \cdot \mathbf{F}^{-1}) \]

with (2.2) \[= \text{Grad} \; (\mathbf{F}^* \cdot \mathbf{F}^{-1}) \cdot \mathbf{F}^{-1} \]

with (2.8) \[= \mathbf{F}^* \cdot (\text{Grad} \; \mathbf{F}^{-1}) \cdot \mathbf{F}^{-1} + [(\text{Grad} \; \mathbf{F}^*)^t \cdot \mathbf{F}^{-1}]^t \cdot \mathbf{F}^{-1} \]

with (2.7) \[= -\mathbf{F}^* \cdot \mathbf{F}^{-1} \cdot [(\text{Grad} \; \mathbf{F}) \cdot \mathbf{F}^{-1}]^t \cdot \mathbf{F}^{-1} + [(\text{Grad} \; \mathbf{F}^*) \cdot \mathbf{F}^{-1}]^t \cdot \mathbf{F}^{-1} \]

with (0.15) \[= \mathbf{F}^T \ast [\mathbf{F}^T \cdot \mathbf{F}^{-1} \cdot \text{Grad} \; \mathbf{F} + \mathbf{F}^T \cdot \text{Grad} \; \mathbf{F}^*] \]
\[= \mathbf{F}^{-T} \ast [-\mathbf{F}^T \cdot \mathbf{F}^{-1} \cdot \mathbf{F}^* \cdot \mathbf{F}^{-1} \cdot \text{Grad} \; \mathbf{F} + \mathbf{F}^T \cdot \mathbf{F} \cdot \mathbf{F}^{-1} \cdot \text{Grad} \; \mathbf{F}^*] \]
with (0.16) \[F^{-T} \circ [-F^{-1} \cdot F^* \cdot F^{-1} \cdot \text{Grad } F + F^{-1} \cdot \text{Grad } F^*] \]
with (2.7) \[F^{-T} \circ [F^{-1} \cdot \text{Grad } F + F^{-1} \cdot \text{Grad } F^*] \]
\[= F^{-T} \circ K^* \]
with
\[K := F^{-T} \cdot \text{Grad } F \]
which has the right subsymmetry by definition.

This triad has been used by CHAMBON/CAILLERIE/TAMAGNINI (2001), FOREST/SIEVERT (2003), CLEJA-TIGIOU (2013), STEINMANN (2015), and other authors. It is sometimes called the connection or curvature, although this might lead to confusion with nabla or the well-known RIEMANNian curvature tensor. Therefore, we prefer to call \(K \) configuration tensor.

The product \(\circ \) in (2.9) can be interpreted as the push-forward from the reference placement to the current placement taking into account the different transformation behaviour of tangent and cotangent vectors.

It can be shown that the configuration tensor \(K \) can be determined by the right CAUCHY-GREEN tensor \(C \) and its gradient according to
\[K = C^{-1} \cdot \text{Sym Grad } C \]
with the following symmetrization of a triadic
\[\text{Sym } T_{ijk} := \frac{1}{2} (T_{ijk} + T_{ikj} - T_{kji}) \].

In the present framework, the pair \((C, K) \) constitutes the local configuration space \(\text{Conf} \), which is \(6 + 18 = 24 \) dimensional. The elements of \(\text{Conf} \) are invariant under both changes of observer and rigid body modifications. The reference placement itself is characterized by \((C \equiv I, K \equiv 0) \) with \(0 \) being the third-order zero tensor.

These fields can be calculated with respect to the natural bases of the coordinate systems \(\{ \varphi^i \} \) in the current placement and \(\{ \Psi^\rho \} \) in the reference placement
\[F = \frac{\partial \varphi^k}{\partial \Psi^\rho} \cdot \mathbf{r}_{\varphi, k} \otimes \mathbf{r}_{\Psi, i} \]
\[F^{-1} = \frac{\partial \Psi^l}{\partial \varphi^k} \cdot \mathbf{r}_{\Psi, l} \otimes \mathbf{r}_{\varphi, k} \]
\[\text{Grad } F = (\frac{\partial \varphi^k}{\partial \Psi^\rho} \cdot \mathbf{r}_{\varphi, k} \otimes \mathbf{r}_{\Psi, l}) \otimes \frac{\partial }{\partial \Psi^j} \mathbf{r}_{\Psi, j} \]
\[= \frac{\partial^2 \varphi^k}{\partial \Psi^\rho \partial \Psi^j} \cdot \mathbf{r}_{\varphi, k} \otimes \mathbf{r}_{\Psi, l} \otimes \mathbf{r}_{\Psi, j} + \frac{\partial \varphi^k}{\partial \Psi^\rho} \cdot (\frac{\partial }{\partial \Psi^j} \mathbf{r}_{\varphi, k}) \otimes \mathbf{r}_{\Psi, l} \otimes \mathbf{r}_{\Psi, j} \]

22 see also NOLL (1967)
23 KRAWIETZ (1993), see also HWANG et al. (2002)
The tangent bases to these coordinates are

\[r_{\psi_k} \otimes \left(\frac{\partial}{\partial \psi_i} r_{\psi j} \right) \otimes r_{\psi j} \]

\[= \frac{\partial^2 \phi^k}{\partial \psi^i \partial \psi^j} r_{\psi k} \otimes r_{\psi i} \otimes r_{\psi j} + \frac{\partial \phi^k}{\partial \psi^i} \frac{\partial \phi^m}{\partial \phi^j} (\frac{\partial r_{\phi k}}{\partial \phi^m} \cdot r_{\phi j}) r_{\phi k} \otimes r_{\psi i} \otimes r_{\psi j} \]

\[+ \frac{\partial \phi^k}{\partial \psi^i} \left(\frac{\partial r_{\phi j}}{\partial \psi^j} \cdot r_{\phi j} \right) r_{\psi k} \otimes r_{\psi i} \otimes r_{\psi j} \]

\[= \left[\frac{\partial^2 \phi^k}{\partial \psi^i \partial \psi^j} + \frac{\partial \phi^j}{\partial \psi^i} \frac{\partial \phi^m}{\partial \phi^j} (\frac{\partial r_{\phi k}}{\partial \phi^m} \cdot r_{\phi j}) \right] r_{\phi k} \otimes r_{\psi i} \otimes r_{\psi j} \]

and

\[(2.16) \quad K = \frac{\partial \Psi^p}{\partial \phi^q} r_{\psi p} \otimes r_{\phi q} \left[\frac{\partial^2 \phi^k}{\partial \psi^i \partial \psi^j} + \frac{\partial \phi^j}{\partial \psi^i} \frac{\partial \phi^m}{\partial \phi^j} (\frac{\partial r_{\phi k}}{\partial \phi^m} \cdot r_{\phi j}) \right] \]

\[+ \frac{\partial \phi^k}{\partial \psi^j} \left(\frac{\partial r_{\phi j}}{\partial \psi^i} \cdot r_{\psi j} \right) r_{\psi k} \otimes r_{\psi i} \otimes r_{\psi j} \]

\[= \frac{\partial \Psi^p}{\partial \phi^q} \left[\frac{\partial^2 \phi^k}{\partial \psi^i \partial \psi^j} + \frac{\partial \phi^j}{\partial \psi^i} \frac{\partial \phi^m}{\partial \phi^j} (\frac{\partial r_{\phi k}}{\partial \phi^m} \cdot r_{\phi j}) \right] \]

\[+ \frac{\partial \phi^k}{\partial \psi^j} \left(\frac{\partial r_{\phi j}}{\partial \psi^i} \cdot r_{\psi j} \right) r_{\psi p} \otimes r_{\psi i} \otimes r_{\psi j} \]

Example We consider the bending and tension of a ring segment. The motion is given by the coordinate transformation

\[r = \chi^1(R, \Theta, Z) = a R \]

\[(2.17) \quad \vartheta = \chi^2(R, \Theta, Z) = b \Theta \]

\[z = \chi^3(R, \Theta, Z) = Z \]

with respect to a cylindrical COOS \(\{ R, \Theta, Z \} \) for the initial or reference placement, and another cylindrical COOS \(\{ r, \vartheta, z \} \) for the current placement.

The tangent bases to these coordinates are

\[r_{\varphi 1} = e_r (\vartheta) \quad r_{\varphi 2} = r e_\vartheta (\vartheta) \quad r_{\varphi 3} = e_z \]

\[r_{\psi 1} = e_r (\Theta) \quad r_{\psi 2} = R e_\vartheta (\Theta) \quad r_{\psi 3} = e_z \]

and the gradient bases
The deformation gradient with respect to the natural bases of these coordinates and the normed ones is

\[
\mathbf{F} = \mathbf{r}_\phi \otimes \mathbf{r}_\psi = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{e}_\phi \otimes \mathbf{e}_\psi = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{bmatrix}
\]

so that

\[
\mathbf{F}^{-1} = \begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & (ab)^{-1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \mathbf{e}_\psi \otimes \mathbf{e}_\phi
\]

which describes a state of plane strain. The right CAUCHY-GREEN tensor is

\[
\mathbf{C} = \mathbf{F}^T \cdot \mathbf{F} = (a \mathbf{r}_\psi \otimes \mathbf{r}_\phi + b \mathbf{r}_\psi^2 \otimes \mathbf{r}_\phi^2 + \mathbf{r}_\psi^3 \otimes \mathbf{r}_\phi^3) \cdot (a \mathbf{r}_\phi \otimes \mathbf{r}_\psi + b \mathbf{r}_\phi^2 \otimes \mathbf{r}_\psi^2 + \mathbf{r}_\phi^3 \otimes \mathbf{r}_\psi^3)
\]
\[\begin{bmatrix} a^2 & 0 & 0 \\ 0 & b^2 r^2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} a^2 & 0 & 0 \\ 0 & b^2 r^2 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} e_{\psi_i} & \otimes & e_{\psi_j} \\ \\ \\ \end{bmatrix} \]

(2.19)

The determinant of \(F \) is \(J = a^2 \cdot b \). Incompressibility would be characterized by \(a^2 = 1/b \). In this case we would obtain

\[\begin{bmatrix} a & 0 & 0 \\ 0 & \frac{1}{a} & 0 \\ 0 & 0 & 1 \end{bmatrix} e_{\phi_k} \otimes e_{\psi_i}. \]

(2.20)

The LAGRANGEan and the EULERean nabla operators are

\[\nabla_0 := \frac{\partial}{\partial \psi^i} r_{\psi}^i \]
\[\nabla := \frac{\partial}{\partial \psi^i} r_{\psi}^i. \]

Further

\[\text{Grad } F = \begin{bmatrix} a & 0 & 0 \\ 0 & ab & 0 \\ 0 & 0 & 1 \end{bmatrix} e_{\phi_k} \otimes e_{\psi_j} \otimes \frac{\partial}{\partial \psi^i} r_{\psi}^i \]

(2.21)

\[= \begin{bmatrix} a & 0 & 0 \\ 0 & ab & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
\[= \begin{bmatrix} a & 0 & 0 \\ 0 & ab & 0 \\ 0 & 0 & 1 \end{bmatrix} \]
\[= (a \frac{\partial}{\partial \psi} e_{\phi_l} b \otimes e_{\psi_j} + ab \frac{\partial}{\partial \psi} e_{\phi_2} b \otimes e_{\psi_2} + a e_{\phi_1} \otimes \frac{\partial}{\partial \psi} e_{\psi_1} + ab e_{\phi_2} \otimes \frac{\partial}{\partial \psi} e_{\psi_2}) \otimes \frac{1}{R} e_{\psi_2} \]
\[+ ab e_{\phi_2} \otimes \frac{\partial}{\partial \psi} e_{\psi_2} \otimes \frac{1}{R} e_{\psi_2} \]
\[= \frac{1}{R} (ab e_{\phi_2} \otimes e_{\psi_1} - ab^2 e_{\phi_1} \otimes e_{\psi_2} + a e_{\phi_1} \otimes e_{\psi_2} - ab e_{\phi_2} \otimes e_{\psi_1}) \otimes e_{\psi_2} \]
\[R \left(1 - b^2 \right) \mathbf{r}_{q_1} \otimes \mathbf{r}_{q^2} \otimes \mathbf{r}_{\Psi}^2 = \frac{1}{R} (a - ab^2) \mathbf{e}_{q_1} \otimes \mathbf{e}_{\Psi 2} \otimes \mathbf{e}_{\Psi 2} \]

and

\[
(2.22) \quad \mathbf{K} = \begin{bmatrix}
 a^{-1} & 0 & 0 \\
 0 & (ab)^{-1} & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]

\[R \left(1 - b^2 \right) \mathbf{r}_{q_1} \otimes \mathbf{r}_{q^2} \otimes \mathbf{r}_{\Psi}^2 = \frac{1}{R} (a - ab^2) \mathbf{e}_{q_1} \otimes \mathbf{e}_{\Psi 2} \otimes \mathbf{e}_{\Psi 2} \]

which is independent of \(a \), and for \(b \equiv 1 \) it vanishes completely.
Stress Power

As a starting point for our gradient theory we have chosen the stress power after (1.144)

\[\Pi_i = \int_{B} \frac{1}{\rho} (T : \nabla \nabla v + T : \nabla \nabla v) \, dm . \]

\(T \) is symmetric because of the balance of angular momentum (1.134), and the first term can be substituted by \(T : D \).

\(\nabla \nabla v \) has the right subsymmetry by definition. So the same symmetry can be imposed on \(\mathcal{T} \) without loss of generality within the present format. The balance of angular momentum does not impose any restriction on \(\mathcal{T} \).

Since \(D \) and \(\nabla \nabla v \) are objective fields after (1.39), we can again see that the stress power is objective if \(T \) and \(\mathcal{T} \) are objective.

For material modelling, however, it is more practical to use invariant variables instead of objective ones. Therefore we will next bring the stress power into a material form which is invariant under EUCLIDean transformations. For this purpose we use (0.13), (0.17), (0.54), (2.9)

\[\Pi_i = \int_{\mathcal{B}_0} \pi_i \, dm \]

with the specific stress power

\[\pi_i := 1/\rho_0 J \left[T : (F^{-T} \ast \frac{1}{2} C^\ast) + \mathcal{T} : (F^{-T} \circ K^\ast) \right] \]

\[= 1/\rho_0 \left[\frac{1}{2} J (F^{-I} \ast T) \ast C^\ast + (F^{-I} \circ J \mathcal{T}) \ast K^\ast \right] \]

\[= 1/\rho_0 \left[\frac{1}{2} S : \ast C^\ast + \mathcal{S} : \ast K^\ast \right] \]

with the two material stress tensors, namely the second PIOLA-KIRCHHOFF tensor

(2.25) \(S := F^{-I} \ast J T \)

and the third-order material hyperstress tensor defined as

(2.26) \(\mathcal{S} := F^{-I} \circ J \mathcal{T} \).

The product \(\circ \) in (2.26) is the pull-back of \(\mathcal{T} \) from the current placement to the reference placement, the same as the RAYLEIGH product in (2.25).
The following tensors are invariant: C, K and their duals S, S^{3}, which makes them good candidates for material modelling.

2.1 Finite Gradient Elasticity

We will now extend the definition of a simple elastic material to a second-order one by enlarging the set of independent variables by the second deformation gradient.

Definition 2.1. We call a material **second-order elastic** if the stress tensors are functions of the motion, the deformation gradient, and the gradient of the deformation gradient

\[
T = f(\chi, \text{Grad} \chi, \text{Grad Grad} \chi) = f(\chi, F, \text{Grad} F)
\]

\[
T^{3} = F(\chi, \text{Grad} \chi, \text{Grad Grad} \chi) = F(\chi, F, \text{Grad} F)
\]

where all variables are taken at the same material point at the same instant of time.

We already know that both stress tensors T and T^{3} behave like objective tensors under EUCLIDEan transformations (Theorem 1.17).

These constitutive equations can be further reduced by means of the EUCLIDEan invariance principle\(^{24}\), which we assume in the following form.

Axiom 2.1 Principle of Invariance under Rigid Body Modifications

The stress power at the end of a motion $\chi(x_{0}, \tau)|_{t=0}$ in some time interval $[0,t]$ equals the stress power after superimposing a rigid body motion upon the original motion

\[
\{Q(\tau) \cdot \chi(x_{0}, \tau) + c(\tau)|_{t=0} \}
\]

with arbitrary differentiable time functions $Q(\tau) \in \mathcal{C}^k$ and $c(\tau) \in \mathcal{V}^{3}$.

The transformation (2.29) has nothing to do with changes of observers (1.33). The invariance under observer changes does not lead to reduced forms (see BERTRAM/ SVENDSEN 2001), in contrast to the Principle of Invariance under Rigid Body Modifications above, as we will next show.

We will further on denote the binary set of elements like $\{T, T^{3}\}$ consisting of all dyadics T and triadics T^{3} with right subsymmetry by LinComb. This space has the dimension $9 + 18 = 27$. A subset of this space is formed by all positive-definite and symmetric second-order tensors C and all triadics with right subsymmetry K, which we call the space of configurations Conf. This set is imbedded in a space with dimension $6 + 18 = 24$. Another subset of LinComb is formed by all invertible dyadics and all triadics with right subsymmetry, which we denote by

\(^{24}\) see BERTRAM (2005), therein called PISM
We can further restrict this subset to those dyadics which are unimodular (determinant equal ±1) denoted by \(\text{UnimComb} \).

Reduced forms of the elastic laws (2.27) and (2.28) are then

\[
\begin{align*}
S &= k(C, K) \\
\{3\} S &= K(C, K)
\end{align*}
\]

by two elastic laws which are defined on the space of configurations

\[
\begin{align*}
k &: \text{Conf} \to \text{Sym} \\
K &: \text{Conf} \to \text{Triad}
\end{align*}
\]

since all involved variables are material and thus invariant under both changes of observers and superimposed rigid body motions. The proof of this statement is a straightforward extension of the rationale given in, e.g., TRUESDE/ NOLL (1965). This means that the elastic laws (2.27) and (2.28) of every second-order elastic material law that obeys the Principle of Invariance under Rigid Body Modifications can be brought into these forms.

There are strong physical arguments that all elastic materials should also be hyperelastic.

Definition 2.2. We will call a material a second-order hyperelastic material if there exists a specific elastic energy

\[
w : \text{Conf} \to \mathbb{R}
\]

such that the specific stress power after (2.24) equals

\[
\pi_i = w(C, K)^*.
\]

Note that the elastic energy defined on the configurations is already in a reduced form. By the chain rule and (2.24), this gives

\[
1/\rho_0 (\text{3} S \cdot C^* + \{3\} S : K^*) = \partial_C w(C, K) \cdot C^* + \partial_K w(C, K) : K^*
\]

and by comparison we obtain the potential relations for (2.30) and (2.31)

\[
\begin{align*}
k(C, K) &= 2\rho_0 \partial_C w(C, K) \\
K(C, K) &= \rho_0 \partial_K w(C, K).
\end{align*}
\]

So there is a clear mathematical distinction between elastic and the hyperelastic materials, and the latter form a proper subset of the first. However, elastic materials that are not hyperelastic, have hardly any physical relevance. In what follows, we will only consider elastic materials that are also hyperelastic, so that both terms are used in a synonymous sense.
Change of Reference Placement

The reduced forms (2.30) and (2.31) and the hyperelastic energy depend on the choice of the reference placement \(\kappa_0 \). If we want to indicate this dependence, we will write for example \(k(\kappa_0, \bullet) \) and \(K(\kappa_0, \bullet) \) for the elastic laws. Their transformation behaviour under change of the reference placement plays an important role for isomorphisms and symmetry transformations, as we will show later.

While the spatial quantities \(\text{grad} \, v, \text{grad grad} \, v, T, \overset{(3)}{T} \) do not depend on the reference placement, the material ones like \(C, K, S, \overset{(3)}{S} \) do so. We will next investigate their transformation behaviour under change of the reference placement. We will therefore consider a second reference placement \(\kappa_0 \) indicated by underlining, like all variables with respect to \(\kappa_0 \).

For an arbitrary differentiable field \(\phi \) given in the LAGRANGEan representation with respect to both reference placements, we obtain by the chain rule

\[
\text{Grad} \, \phi = (\text{Grad} \, \phi) \cdot A
\]

where \(A = \text{Grad} \, (\kappa_0 \kappa_0^{-1}) \in S^{n \times n}_{+} \) is the gradient of the change of reference placement. It is understood that the field \(\phi \) is defined as a field on the corresponding reference placements, which has identical values for identical material points.

In particular, we find

\[
\overset{(2.37)}{F} = \text{Grad} \, \chi = F \cdot A
\]

so that

\[
\overset{(3)}{J} = \rho / \rho_0 = J \det(A) = \rho / \rho_0 \cdot J_A \quad \text{or} \quad \rho_0 / \rho_0 = J_A \quad \text{with} \quad J_A = \det(A)
\]

and

\[
C = A^T \cdot C \cdot A = A^T \ast C.
\]

For the second gradient the transformation is

\[
\text{Grad} \, F = \text{Grad} \, (F \cdot A)
\]

with (2.8)

\[
= F \cdot \text{Grad} \, A + [(\text{Grad} \, F)' \cdot A]' \\
\]

with (2.36)

\[
= F \cdot \text{Grad} \, A + [((\text{Grad} \, F) \cdot A)' \cdot A]' \\
\]

with (0.15)

\[
= F \cdot \text{Grad} \, A + A^{-T} \ast (A^{-T} \cdot \text{Grad} \, F).
\]

Thus

\[
\overset{(2.39)}{K} = F^{-1} \cdot \text{Grad} \, F
\]

\[
= A^{-1} \cdot F^{-1} \cdot \{F \cdot \text{Grad} \, A + A^T \ast (A^{-T} \cdot \text{Grad} \, F)\}
\]

\[
= A^{-1} \cdot \text{Grad} \, A + A^{-1} \cdot F^{-1} \cdot [A^T \ast (A^{-T} \cdot \text{Grad} \, F)]
\]

with (0.11)

\[
= A^{-1} \cdot \text{Grad} \, A + A^{-1} \cdot F^{-1} \cdot [A^{-T} \ast (A^T \ast \text{Grad} \, F)]
\]
with (0.12) \(= A^{-1} \cdot \text{Grad} A + A^T \ast (A^{-T} \cdot A^{-1} \cdot \text{F}^{-1} \text{Grad} \text{F}) \)

with (0.16) \(= K_A + A^T \circ K \)

with the configuration of \(\kappa_0 \) with respect to \(\xi_0 \)

(2.40) \(K_A := A^{-1} \cdot \text{Grad} A \).

For the material stresses we obtain

(2.41) \(S = J \text{F}^{-I} \cdot \text{T} \cdot \text{F}^{-T} \)

with (2.37) \(= (\text{det } A) J A^{-I} \cdot \text{T} \cdot \text{F}^{-T} \cdot A^{-T} \)

\(= (\text{det } A) A^{-I} \cdot S \cdot A^T \)

\(= A^{-I} \ast J_A S \)

and with (2.26) for the hyperstresses

(2.42) \(3S = \text{F}^{-I} \circ J \text{T} \)

with (2.37) \(= (\text{det } A) J A^{-I} \cdot (\text{det } A) J \text{T} \)

with (0.20) \(= A^{-I} \circ [\text{F}^{-I} \circ (J_A J \text{T})] \)

with (2.26) \(= A^{-I} \circ J_A (3S) \)

or inversely

(2.43) \(3S = A \circ J_A^{-I} (3S) \).

The above formulae hold for arbitrary changes of reference placements. If we particularize these results to rigid rotations of the reference placements \(A \in \text{Orth}^+ \) we have

(2.44) \(J_A = I \quad \text{Grad } A = 0 \)

\(K = A^T \ast K \quad \{3\} \text{S} = A^T \ast \{3\} \text{S} \)

Coming back to the general case, the elastic laws (2.30) and (2.31) with respect to two different reference placements are transformed as

(2.45) \(k(\kappa_0, C, K) = A \ast [J_A^{-I} k(\kappa_0, A^T \ast C, K_A + A^T \circ K)] \)

(2.46) \(K(\kappa_0, C, K) = A \circ [J_A^{-I} K(\kappa_0, A^T \ast C, K_A + A^T \circ K)] \)

for all \((C, K) \in \text{Conf} \) using (2.37), (2.40), (2.41), and (2.43).

For the hyperelastic energy introduced in (2.32) we obtain for the change of the reference placement

(2.47) \(w(\kappa_0, C, K) = w(\kappa_0, C, K) = w(\kappa_0, A^T \ast C, K_A + A^T \circ K) \quad \forall (C, K) \in \text{Conf} \)
which is in accordance with (2.34), (2.35), (2.37), (2.39) and would again give (2.45) and (2.46).

The change of the reference placement enters into these transformations only through the couple \((A, K_A) \in InvComb\). *Vice versa*, for any such couple one can surely find a corresponding reference placement obeying (2.37) and (2.39). In fact, there are always infinitely many reference placements that do so.

Elastic Isomorphy

This concept plays an important role for the formulation of elasticity and elastoplasticity\(^{25}\). It is used to precisely define the notion that two elastic points show the *same elastic behaviour*.

We have already seen that our elastic laws depend on the choice of the reference placement. If we want to compare two different elastic points, we have to take these dependencies of the respective elastic laws into account.

Definition 2.3. Two elastic material points \(X\) and \(Y\) are called **elastically isomorphic** if we can find reference placements \(\kappa_X\) for \(X\) and \(\kappa_Y\) for \(Y\) such that the following two conditions hold.

- In \(\kappa_X\) and \(\kappa_Y\) the mass densities are equal
 \[\rho_{0X} = \rho_{0Y}\] \((2.48)\)
- With respect to \(\kappa_X\) and \(\kappa_Y\) the elastic laws are identical
 \[k_X(\kappa_X, \bullet) = k_Y(\kappa_Y, \bullet)\] \((2.49)\)
 \[K_X(\kappa_X, \bullet) = K_Y(\kappa_Y, \bullet)\] \((2.50)\)

In the hyperelastic case one can equivalently demand that the energy functions coincide

\[w_Y(\kappa_Y, \bullet) = w_X(\kappa_X, \bullet) + w_c\] \((2.51)\)

up to some constant \(w_c \in \mathbb{R}\) instead of (2.49) and (2.50).

TESTA/ VIANELLO (2005) demand in addition to (2.48) that also the gradient of the density is equal in the two points, an assumption which makes sense in the context of elastic gradient fluids. In the present context, however, we do not see any reason for such a restriction.

If two isomorphic elastic laws are given with respect to arbitrary reference placements \(\kappa_X\) and \(\kappa_Y\), then we must probably first transform them to appropriate \(\kappa_X\) and \(\kappa_Y\) using (2.45) and (2.46).

\[k_X(\kappa_X, C_X, K_X) = A_X^{-1} \left[J_X^{-1} k_X(\kappa_X, A_X^T C_X, K_A + A_X^T \circ K_A) \right] \] \((2.52)\)

\[K_X(\kappa_X, C_X, K_X) = A_X \circ [J_X^{-1} K_X(\kappa_X, A_X^T C_X, K_A + A_X^T \circ K_A)] \] \((2.53)\)

\(^{25}\) see BERTRAM (1998), (2005)
and

\[k_Y(\kappa_Y, C_Y, K_Y) = A_Y^* \left[J_Y^{-1} k_Y(\kappa_Y, A_Y^T \ast C_Y, K_{\Lambda Y} + A_Y^T \circ K_Y) \right] \]

\[K_Y(\kappa_Y, C_Y, K_Y) = A_Y \circ \left[J_Y^{-1} K_Y(\kappa_Y, A_Y^T \ast C_Y, K_{\Lambda Y} + A_Y^T \circ K_Y) \right] \]

with \(A_{XY} : = \text{Grad}(\kappa_{XY} \kappa_{XY}^{-1}) \), \(J_{XY} : = \text{det}(A_{XY}) \), and \(K_{\Lambda XY} : = A_{XY}^{-1} \text{Grad} A_{XY} \)

as well as the mass densities in these reference placements

\[\rho_{0X}/\rho_{0X} = J_X \quad \text{and} \quad \rho_{0Y}/\rho_{0Y} = J_Y. \]

So the above isomorphy conditions hold if and only if

\[\rho_{0X} J_{X}^{-1} = \rho_{0Y} J_{X}^{-1} \]

\[k_X(\kappa_X, C, K) = k_Y(\kappa_Y, C, K) \]

\[K_X(\kappa_X, C, K) = K_Y(\kappa_Y, C, K) \quad \forall (C, K) \in \text{Conf}. \]

Then they certainly also hold for the inverse transformation

\[(A_X^{-T} \ast C, - A_X^{-T} \circ K_{\Lambda X} + A_X^{-T} \circ K) \in \text{Conf} \]

so that

\[k_X(\kappa_X, A_X^{-T} \ast C, - A_X^{-T} \circ K_{\Lambda X} + A_X^{-T} \circ K) = k_Y(\kappa_Y, A_X^{-T} \ast C, - A_X^{-T} \circ K_{\Lambda X} + A_X^{-T} \circ K) \]

\[K_X(\kappa_X, A_X^{-T} \ast C, - A_X^{-T} \circ K_{\Lambda X} + A_X^{-T} \circ K) = K_Y(\kappa_Y, A_X^{-T} \ast C, - A_X^{-T} \circ K_{\Lambda X} + A_X^{-T} \circ K) \quad \forall (C, K) \in \text{Conf}. \]

If we multiply the first equation by \(A_X^{-1} \ast J_X \) and the second one by \(A_X^{-1} \circ J_X \), then we see that the left-hand sides give the elastic laws in the reference placement \(\kappa_X \), so that we achieve

\[k_X(\kappa_X, C, K) = A_X^{-1} \ast \left[J_X k_Y(\kappa_Y, A_X^{-T} \ast C, - A_X^{-T} \circ K_{\Lambda X} + A_X^{-T} \circ K) \right] \]

\[K_X(\kappa_X, C, K) = A_X^{-1} \circ \left[J_X K_Y(\kappa_Y, A_X^{-T} \ast C, - A_X^{-T} \circ K_{\Lambda X} + A_X^{-T} \circ K) \right]. \]

By interpreting the right-hand side as a change of the reference placement for \(Y \), we see that the isomorphy conditions hold for this choice of reference placements as well. By the notations \(A_X = : P \) and \(K_{\Lambda} = : P \), the following equivalent, but simpler isomorphy conditions result.\(^{26}\)

The dyadic \(P \) can be interpreted as the gradient of the change of the reference placement and the triadic \(P \) as its second gradient. However, in a local theory, these two tensors can be considered as being independent of each other.

\(^{26}\) This theorem has been used for simple elastic materials in BERTRAM (2005). In a more general format is has been shown already in BERTRAM (1982, page 111) and BERTRAM (1989, page 206).
Theorem 2.1. Two elastic material points X and Y with elastic laws k_X, K_X and k_Y, K_Y with respect to arbitrary reference placements are elastically isomorphic if and only if there exist two tensors $(P, \bar{P}) \in \text{InvComb}$ such that

\begin{align}
\rho_{0X} &= \rho_{0Y} \det(P) \\
k_Y(C, K) &= \det^{-1}(P) [P \ast k_X(P^T \ast C, P^T \circ K + P)] \\
K_Y(C, K) &= \det^{-1}(P) [P \circ k_X(P^T \ast C, P^T \circ K + P)]
\end{align}

hold for all $(C, K) \in \text{Conf}$ with ρ_{0X} and ρ_{0Y} being the mass densities in the reference placements of X and Y, respectively. This gives for the elastic energy in the case of isomorphy

\begin{equation}
w_Y(C, K) = w_X(P^T \ast C, P^T \circ K + P) + w_c \quad \forall (C, K) \in \text{Conf}
\end{equation}

equivalent to (2.64) and (2.65) with some constant $w_c \in \mathbb{R}$.

Material Symmetry

If we particularize the concept of isomorphy to identical points $X \equiv Y$, it defines automorphy or symmetry. In this case we consider only one point so that we can drop the point index, and denote the automorphism by $(A, A) \in \text{InvComb}$ to distinguish from the isomorphisms of the previous section. Because of the first isomorphy condition, any automorphism must be unimodular in its first entry: $(A, A) \in \text{UnimComb}$. This leads us to the following definition using (2.66).

Definition 2.4. For a gradient hyperelastic material with elastic energy w, a symmetry transformation is a pair $(A, A) \in \text{UnimComb}$ such that

\begin{equation}
w(C, K) = w(A^T \ast C, A^T \circ K + A) \quad \forall (C, K) \in \text{Conf}
\end{equation}

This gives with (2.34) and (2.35) the transformations for the elastic laws

\begin{align}
k(C, K) &= A \ast k(A^T \ast C, A^T \circ K + A) \\
K(C, K) &= A \circ K(A^T \ast C, A^T \circ K + A)
\end{align}

The set of all such symmetry transformations represented by such a couple $(A, A) \in \text{UnimComb}$ forms the symmetry group of the material. In fact, the transformation is a group under composition in the algebraic sense. Its identity is $(I, 0) \in \text{UnimComb}$. The composition of two elements (A, A) and $(B, B) \in \text{UnimComb}$ is

$$(A, A) (B, B) := (A \cdot B, B^T \circ A + B) \in \text{UnimComb}$$

which does not commute. The inverse of some $(A, A) \in \text{UnimComb}$ is
\((A^{-I}, -A^{-T} \circ A) \in \text{UnimComb}\).

Up to now, little is known about the role of the triadic \(A\) in the symmetry transformation. But we can learn from simple materials about the role of the dyadic \(A\).

For that purpose we consider symmetry transformations of the form \((Q, 0)\) with \(Q \in \text{Orth}\) and 0 being the zero triadic. Such elements form a subgroup of the symmetry group and can be interpreted as rigid rotations. If the symmetry group of a material contains all proper orthogonal dyadics in the first entry, we would call it \textit{hemitropic}. These definitions apply not only to gradient thermoelasticity, but also to any inelastic gradient material in an analogous way.

Here one could also allow for improper symmetry transformations like \((-Q, 0)\) with \(Q \in \text{Orth}^\pm\). Since we are dealing with even and odd-order tensors, this minus sign does not cancel out in (2.67) - (2.69). Thus, for gradient materials improper symmetry transformations do play a non-trivial role, in contrast to simple materials.

If a material contains with all proper symmetry transformations \((A, 0)\) also the corresponding improper ones \((-A, 0)\), it is called \textit{centro-symmetric}. This centro-symmetry is often tacitly included, although it is a strong restriction with many consequences.

A material that is hemitropic and centro-symmetric possesses the entire general orthogonal group and is called \textit{isotropic}.

In all of these cases, we obtain after (2.44)
\[
\begin{align*}
(2.70) & \quad Q \ast k(C, K) = k(Q \ast C, Q \ast K) \\
(2.71) & \quad Q \ast K(C, K) = K(Q \ast C, Q \ast K) \\
(2.72) & \quad w(C, K) = w(Q \ast C, Q \ast K)
\end{align*}
\]
\(\forall (C, K) \in \text{Conf}\). Thus, for an isotropic material the elastic laws are isotropic tensor functions.

In Murdoch (1979)27 one finds interesting considerations about the symmetry of second-gradient materials. Murdoch uses other configuration variables than we do, namely \(F\) and \(F^T \cdot \text{Grad} F\), the latter being a material quantity, in contrast to the first one.

Finite Linear Gradient Elasticity

For many applications the elastic deformations are rather small, which justifies the linearization of the hyperelastic laws. In order to avoid the introduction of new notations like a generalized VOIGT notation, we use a tensor notation.

In the physically linear hyperelasticity theory, the elastic energy is assumed to be a symmetric square form of the strains. If the reference placement is chosen as stress free (unloaded), we consider configurations like \((E^G, K)\) with a (small) Green’s strain tensor
\[
E^G := \frac{1}{2} (C - I) \in \text{Sym}
\]
\(27\) see also CROSS (1973), ELZANOWSKI/ EPSTEIN (1992), LEON/ EPSTEIN (1996), and MÜNCH/ NEFF (2016) for such considerations related to the symmetry group.
and a (small) K which means that
\[|E^G| << 1 \quad \text{and} \quad |L| |K| << 1 \]
with a scaling parameter L of dimension length.

In tensor notations the quadratic energy can be represented by
\[(2.73) \quad \rho_0 w = \frac{1}{2} E^G : E_{22} \cdot E^G + \frac{1}{2} K : E_{23} \cdot E_{33} : \cdot K \]
with higher-order elasticity tensors E_{22}, E_{23}, E_{33}.

These elasticities can be submitted to the following symmetry conditions:
- E_{22}^4:
 - left subsymmetry \(\{ij\ kl\} = \{ji\ kl\} \)
 - right subsymmetry \(\{ij\ kl\} = \{ij\ lk\} \)
 - and the major symmetry \(\{ij\ kl\} = \{kl\ ji\} \)
with 21 independent constants as customary from classical elasticity
- E_{23}^5:
 - left subsymmetry \(\{ij\ klm\} = \{ji\ klm\} \)
 - right subsymmetry \(\{ij\ klm\} = \{ij\ kml\} \)
with $6 \times 18 = 108$ independent parameters after (4.4)
- E_{33}^6:
 - left subsymmetries \(\{ijk\ lmn\} = \{ikj\ lmn\} \)
 - right subsymmetries \(\{ijk\ lmn\} = \{ijk\ lmn\} \)
 - and major symmetry \(\{ijk\ lmn\} = \{lmn\ ijk\} \)
with $18^2/2 + 18/2 = 171$ independent parameters

This gives in total again 300 constants, which can eventually be reduced by the exploitation of symmetry properties.

For the hemitropic case we can use the representation (0.34) for the elastic energy
\[(2.74) \quad w(E^G, K) = \frac{1}{2\rho_0} \left[a_1 (E^G \cdot I)^2 + a_2 E^G \cdot E^G + b_1 (K \cdot I) \cdot (K \cdot I) \right. \]
\[+ b_2 I \cdot K \cdot K \cdot I + b_3 (I \cdot K) \cdot (I \cdot K) + b_4 K \cdot K + b_5/2 K \cdot K. \cdot (K^{[12]} + K^{[13]}) \]
\[+ 2c E^G \cdot (\varepsilon \cdot K) \]
are the two classical LAMÉ constants, and \(c \) and \(b_i \) six additional scalar material constants. In the isotropic case \(c \) is zero.

This gives the following stresses after (2.34), (2.35), (0.35), and (0.36)

\[
S = a_1 (E^G \cdot I) I + a_2 E^G + c \text{ sym}(\varepsilon \cdot K)
\]

(2.75)

\[
\langle S \rangle = \text{sym}^{[23]}[b_2 I \otimes K \cdot I + b_3 I \otimes I \cdot K + c \varepsilon \cdot E^G] + b_1 K \cdot I + b_4 K + b_5/2(K^{[12]} + K^{[13]}).
\]

(2.76)

The isotropic version of the elastic energy can already be found in MINDLIN/ESHEL (1968) with only 7 independent parameters including the two LAMÉ constants from classical elasticity.\(^{28}\)

In the general anisotropic case, the elastic energy (2.73) acts as a potential for the stresses after (2.34) and (2.35)

\[
k(E^G, K) = \langle E^{(4)}_{22} \rangle \cdot E^G + \langle E^{(5)}_{23} \rangle \cdot K
\]

(2.77)

\[
K(E^G, K) = E^G \cdot \langle E^{(5)}_{23} \rangle + \langle E^{(6)}_{33} \rangle \cdot K.
\]

(2.78)

These laws are straightforward extensions of the ST.-VENANT-KIRCHHOFF law to gradient elasticity. They are physically linear, but geometrically nonlinear, and they fulfill the EUCLIDEan invariance requirement. Note that the linear theory depends on the choice of the stress and configuration variables, in contrast to the preceding non-linear theory. However, for small deformations, the differences remain negligible.

In the linear case the isomorphy conditions (2.49) and (2.50) become with \((P, P) \in \mathcal{I}_{ax}\)

\[
\langle E^{(4)}_{22} \rangle \cdot E^G + \langle E^{(5)}_{23} \rangle \cdot K
\]

(2.79)

\[
= P \cdot \text{det}^{-1}(P) \{ \langle E^{(4)}_{22} \rangle \cdot (P^T \cdot E^G) + \langle E^{(5)}_{23} \rangle \cdot (P^T \cdot K + P) \}
\]

and

\[
\langle E^{(5)}_{23} \rangle \cdot E^G + \langle E^{(6)}_{33} \rangle \cdot K
\]

(2.80)

\[
= P \circ (\text{det}^{-1}(P)) \{ \langle E^{(5)}_{23} \rangle \cdot (P^T \cdot E^G) + \langle E^{(6)}_{33} \rangle \cdot (P^T \cdot K + P) \}.
\]

By a comparison in the independent variables \((E^G, K)\) one can determine the transformations of the elasticities and the unloaded configuration like

\[
\langle E^{(4)}_{22} \rangle = P \cdot \text{det}^{-1}(P) \langle E^{(4)}_{22} \rangle \quad \text{and} \quad C_{uY} = P^{-T} \cdot C_{uX}.
\]

For the other elastic tensors such relations can also be obtained but become more complicated.

The linearity of the elastic laws will not be assumed in what follows, in order to preserve full generality.
2.2 Finite Gradient Elastoplasticity

There are not many papers in the literature dealing with finite plastic deformations of gradient materials. In most of them, the internal length scale enters through the gradient of some internal variable, like hardening variables or the plastic deformation. Examples for such approaches are given by GURTIN/ANAND (2005), GURTIN/FRIED/ANAND (2009), GURTIN (2010), LUSCHER et al. (2010), and CLEJA-ŢIGOIU (2013).

Our intention here, however, is to not limit the theory to such special cases, but instead to allow for a second and a third-order plastic variable as being substantially independent of each other (unconstrained gradient plasticity). This is the more general case, and there is no rationale known which would exclude this choice. Particular cases, in which this independence is not given, should be nevertheless contained in this general setting.

By elastoplasticity we understand rate-independent materials with elastic ranges. For a gradient theory of elastoplasticity, we consider materials for which both the elastic and the plastic behaviour are assumed to be of gradient type.

One assumes that after any deformation process the material is within some elastic range for which elastic laws for the stresses exist. Thus, the stresses can be determined by these current elastic laws. And this holds also for any continuation of the deformation process as long as it does not leave the current elastic range. If this happens, the material continuously passes through different elastic ranges, a process which characterizes yielding.

We want to make these concepts more precise.

Definition 2.5. A (hyper)elastic range is a pair \(\{ \mathcal{E}_p, w_p \} \) consisting of

1.) a path-connected submanifold with boundary \(\mathcal{E}_p \subset \text{Conf} \)

2.) and the elastic energy

\[
(2.82) \quad w_p : \mathcal{E}_p \to \mathbb{R} \quad \begin{array}{c}
(C, K) \\
\mapsto w_p(C, K)
\end{array}
\]

such that after any continuation process \(\{ C(\tau), K(\tau) \} \mid \tau \in [t_0, t] \) which remains entirely in \(\mathcal{E}_p \)

\[
\{ C(\tau), K(\tau) \} \in \mathcal{E}_p \quad \forall \ \tau \in [t_0, t]
\]

the stresses are determined after (2.34) and (2.35) by the final values of the process as

\[
(2.83) \quad S(t) = 2\rho_0 \partial_C w_p(C, K) : = k_p(C, K)
\]

\[
(2.84) \quad S(t) = \rho_0 \partial_K w_p(C, K) : = K_p(C, K).
\]

The elastic laws are physically determined only for configurations within the specific elastic range \(\mathcal{E}_p \). However, in what follows we will extend them to the entire space \(\text{Conf} \) for simplicity.
In contrast to many other authors, we introduce the elastic ranges in the configuration space. By the elastic laws (2.83) and (2.84), one can easily transform them into the space of stresses and hyperstresses if this is preferred.

Assumption 2.1. At each instant the elastoplastic material point is associated with an elastic range so that the stresses are given by (2.83) and (2.84).

Isomorphy of the Elastic Ranges

During yielding two effects have to be considered. Firstly, the elastic range E_p as a subset of $Conf$ evolves reflecting the hardening or softening behaviour of the material. And secondly, the elastic energy function associated with these elastic ranges can also evolve. We will first address this second effect.

For many materials it is a microphysically and experimentally well-substantiated fact that during yielding the elastic behaviour hardly alters even under large deformations. This substantiates the assumption, that the elastic behaviour remains identical. Such an assumption reduces the effort for the identification tremendously, since otherwise one would have to identify the elastic constants at each step of the deformation anew.\(^\text{29}\)

We now give this assumption a precise form.\(^\text{30}\)

Assumption 2.2. The elastic laws of all elastic ranges are isomorphic.

Note that in Assumption 2.2 nothing is said about the form or size of the elastic ranges E_p in the configuration space. So the hardening behaviour is not at all restricted by it.

As a consequence, if $\{E_1, w_1\}$ and $\{E_2, w_2\}$ are two elastic ranges, then according Theorem 2.1 there exist two tensors $(P_{12}, P_{12}) \in \text{InvComb}$ and a scalar w_c such that

- for the mass densities in the reference placements ρ_{01} and ρ_{02} holds
 \[
 \rho_{01} = \rho_{02} \det P_{12}
 \]
 \[\text{(2.85)}\]
- and for the elastic energies we have the equality after (2.66)
 \[
 w_2(C, K) = w_1(P^T \ast C, P^T \circ K + P) + w_c
 \]
 \[\text{(2.86)}\]
 such that the elastic stress laws are after (2.34) and (2.35)
 \[
 k_2(C, K) = (\det^{-1} P_{12}) [P_{12} \ast k_1(P_{12}^T \ast C, P_{12}^T \circ K + P_{12})]
 \]
 \[\text{(2.87)}\]
 \[
 K_2(C, K) = (\det^{-1} P_{12}) [P_{12} \circ K_1(P_{12}^T \ast C, P_{12}^T \circ K + P_{12})]
 \]
 \[\text{(2.88)}\]
 $\forall (C, K) \in Conf$. As we have chosen a joint reference placement for all elastic laws of one particular material point (this is, however, not compulsory), we already have $\rho_{01} \equiv \rho_{02}$, and

\(^{29}\) One of the few examples where this assumption has not been made is BÖHLKE/BERTRAM (2001).

\(^{30}\) see BERTRAM (1998)
therefore \(P_{12} \) must be proper unimodular, so that the first isomorphy condition (2.85) is always fulfilled.

If all elastic energies belonging to different elastic ranges are mutually isomorphic, then because of the group property of isomorphy transformations, they all are isomorphic to some freely chosen \textbf{elastic reference energy} \(w_0 \). While the current elastic energy function \(w_p \) varies with time during yielding, the reference energy function can always be chosen as constant in time. We thus have the isomorphy condition in the following form.

\[
\begin{align*}
\text{Theorem 2.2. Let} \; w_0 \; \text{be the elastic reference energy for an elasto-plastic material. Then for each elastic range} \; \{\mathcal{E}_p, w_p\} \; \text{there are two tensors} \; (P, P) \in \text{UnimComb} \; \text{and a scalar} \; w_{c0} \; \text{such that} \\
\text{(2.89)} \quad w_p(C, K) = w_0(P^T \ast C, P^T \circ K + P) + w_{c0} \quad \forall (C, K) \in \text{Conf}.
\end{align*}
\]

The elastic laws are then given by

\[
\begin{align*}
\text{(2.90)} \quad S &= k_p(C, K) = 2\rho_0 \partial_C w_p(C, K) \\
&= 2\rho_0 \partial_C w_0(P^T \ast C, P^T \circ K + P) \\
&= P \ast k_0(P^T \ast C, P^T \circ K + P)
\end{align*}
\]

and

\[
\begin{align*}
\text{(2.91)} \quad \langle S \rangle &= K_p(C, K) = \rho_0 \partial_K w_p(C, K) \\
&= \rho_0 \partial_K w_0(P^T \ast C, P^T \circ K + P) \\
&= P \circ K_0(P^T \ast C, P^T \circ K + P) \quad \forall (C, K) \in \text{Conf}.
\end{align*}
\]

In the present theory, the two variables \((P, P) \in \text{UnimComb}\) are chosen as the plastic internal variables. One might be tempted to interpret the argument of (2.90) and (2.91) as both an additive and a multiplicative decomposition of the kinematical variables\(^{31}\). They are, however, not introduced as deformations but rather as a transformation of the current elastic energy (not of a placement) to a time-independent reference energy function, which results in a natural way from the isomorphy condition. We avoid the introduction of an intermediate configuration or a split of some deformation into elastic and plastic parts since it is misleading in a finite deformation theory\(^{32}\).

If one linearizes these elastic laws with respect to some unloaded configuration \((C_{up}, K_{up}) \in \text{Conf}\), then we obtain after (2.79) and (2.80)

\[
\begin{align*}
\text{(2.92)} \quad \langle E \rangle_{22 \, P} & \ll (C - C_{up}) + \langle E \rangle_{23 \, P} \ll (K - K_{up}) \\
&= P \ast \{ \langle E \rangle_{22 \, P} \ll (P^T \ast C - C_{u0}) + \langle E \rangle_{23 \, P} \ll (P^T \circ K + P - K_{u0}) \}
\end{align*}
\]

\(^{31}\) In CHAMBON/ CAILLERIE/ TAMAGNINI (2001) such an interpretation is given.

\(^{32}\) see the comments in BERTRAM (2005) on p. 291.
\((2.93) \)

\[
\frac{1}{2}(\mathbf{C} - \mathbf{C}_{\text{up}}) \cdot \mathbf{E}_{23}^\mathbb{p} + \mathbf{E}_{33}^\mathbb{p} \cdot (\mathbf{K} - \mathbf{K}_{\text{up}})
\]

\[
= \mathbf{P} \circ \left\{ \frac{1}{2}(\mathbf{P}^\mathbb{T} \ast \mathbf{C} - \mathbf{C}_{\text{u0}}) \cdot \mathbf{E}_{23}^\mathbb{0} + \mathbf{E}_{33}^\mathbb{0} \cdot (\mathbf{P}^\mathbb{T} \circ \mathbf{K} + \mathbf{P} - \mathbf{K}_{\text{u0}}) \right\}
\]

where the suffix \(\mathbb{p} \) indicates the (time-dependent) quantities related to the linear forms of \(k_p \) and \(K_p \), and the suffix \(\mathbb{0} \) to the (time-independent) ones of the linear forms of the elastic reference laws \(k_0 \) and \(K_0 \). Again one can determine the transformations of the elasticities and the unloaded configuration as in (2.81)

\((2.94) \)

\[
\mathbf{E}_{22}^\mathbb{p} = \mathbf{P} \ast \mathbf{E}_{22}^\mathbb{0} \quad \text{and} \quad \mathbf{C}_{\text{up}} = \mathbf{P}^{-\mathbb{T}} \ast \mathbf{C}_{\text{u0}}
\]

Yield Criteria

Let us first consider one particular elastic range \(\{\mathcal{E}_p, w_p\} \). We decompose the set \(\mathcal{E}_p \) topologically into its interior \(\mathcal{E}_p^\mathbb{o} \) and its boundary \(\partial \mathcal{E}_p \). The latter is called yield surface (in the configuration space). In order to describe it more easily, we introduce a real-valued tensor-function in the configuration space

\[
\Phi_p : \mathcal{C} \rightarrow \mathbb{R} \mid (\mathbf{C} , \mathbf{K}) \mapsto \Phi_p(\mathbf{C} , \mathbf{K})
\]

the kernel of which coincides with the yield limit

\((2.95) \)

\[
\Phi_p(\mathbf{C} , \mathbf{K}) = 0 \quad \Leftrightarrow \quad (\mathbf{C} , \mathbf{K}) \in \partial \mathcal{E}_p
\]

For distinguishing points in the interior and in the exterior of the elastic ranges, we postulate

\((2.96) \)

\[
\Phi_p(\mathbf{C} , \mathbf{K}) < 0 \quad \Leftrightarrow \quad (\mathbf{C} , \mathbf{K}) \in \mathcal{E}_p^\mathbb{o}
\]

and, consequently,

\((2.97) \)

\[
\Phi_p(\mathbf{C} , \mathbf{K}) > 0 \quad \Leftrightarrow \quad (\mathbf{C} , \mathbf{K}) \in \mathcal{C} \setminus \mathcal{E}_p
\]

We call such an indicator function or level set function a yield criterion, and assume further on for simplicity that \(\Phi_p \) is differentiable, although there are also suggestions with corners and edges. One can always transform the yield criterion from the configuration space into the stress space by using the elastic laws using (2.90) and (2.91).

Instants of yielding are characterized by two facts.

- The configuration is currently on the yield limit and, thus, fulfils its yield condition

\((2.98) \)

\[
\Phi_p(\mathbf{C} , \mathbf{K}) = 0
\]

- It is about to leave the current elastic range. This is expressed by the loading condition

\((2.99) \)

\[
\Phi_p^* = \partial_\mathbf{C} \Phi_p \cdot \mathbf{C}^* + \partial_\mathbf{K} \Phi_p \cdot \mathbf{K}^* > 0
\]
Such a yield criterion is associated with some particular elastic range. In order to obtain a general yield criterion that holds for all elastic ranges in the same form, we introduce additional internal variables \(Z_p \) (here denoted as a dyadic) called hardening variables (although they could also describe softening). These can be tensors of arbitrary order or even a vector of such tensors and, thus, form elements of some finite dimensional linear space, the specification of which depends on the particular hardening model.

The general form of the yield criterion is assumed to be like

\[
\phi(P, P, C, K, Z_p) \tag{2.101}
\]

such that

\[
\Phi_p(C) = \phi(P, P, C, K, Z_p) \tag{2.102}
\]

holds for each particular elastic range.

With this extension we obtain for the yield condition (2.98)

\[
\phi(P, P, C, K, Z_p) = 0 \tag{2.103}
\]

and for the loading condition (2.99)

\[
\partial C \phi \cdot \cdot C + \partial K \phi :: K > 0 \tag{2.104}
\]

where the plastic variables are kept constant.

Decomposition of the Stress Power

We will next consider the stress power again and specify it for our elastoplastic material. The specific stress power (2.24) is using (0.13) and (0.17)

\[
\pi_l = 1/\rho_0 (\frac{1}{2} S \cdot C^* + \langle S : K^* \rangle) \tag{2.105}
\]

with (2.90), (2.91)

\[
= 1/\rho_0 (\frac{1}{2} k_0(C, K) \cdot C^* + K_0(C, K) :: K^*)
\]

\[
= 1/\rho_0 [\frac{1}{2} P \ast k_0(P^T \ast C, P^T \circ K + P) \cdot C^*
\]

\[
+ P \circ K_0(P^T \ast C, P^T \circ K + P) :: K^*)
\]

\[
= 1/\rho_0 [\frac{1}{2} k_0(C_e, K_e) \cdot (P^T \ast C^*) + K_0(C_e, K_e) :: (P^T \circ K^*)]
\]

with the abbreviations

\[
C_e := P^T \cdot C \cdot P = P^T \ast C \tag{2.106}
\]

\[
K_e := P^T \circ K + P. \tag{2.107}
\]

This gives for the rates

\[
C_e^* = (P^T \cdot C \cdot P)^* = P^T \cdot C^* \cdot P + 2 \text{sym}(P^T \cdot C \cdot P^*)
\]

\[
= P^T \ast C^* + 2 \text{sym}(C_e \cdot P^{-1} \cdot P^*) \tag{2.108}
\]

where \(\text{sym} \) stands for the symmetric part, and
\[(2.109) \quad K^e_\cdot = \{P^{\prime} \circ K + P\}^e_\cdot = P^{\prime} \circ K^e_\cdot + P^e_\cdot \\
+ K^c_{jk} \{(P^{-1} \cdot e_i) \otimes (P^{\prime} \cdot e_j) \otimes (P^{\prime} \cdot e_k) \\
+ (P^{-1} \cdot e_i) \otimes (P^{\prime} \cdot e_j) \otimes (P^{\prime} \cdot e_k) + (P^{-1} \cdot e_i) \otimes (P^{\prime} \cdot e_j) \otimes (P^{\prime} \cdot e_k)\} \\
= P^{\prime} \circ K^e_\cdot + P^e_\cdot \\
+ K^c_{jk} \{- (P^{-1} \cdot P^e_\cdot \cdot P^{-1} \cdot e_i) \otimes (P^{\prime} \cdot e_j) \otimes (P^{\prime} \cdot e_k) \\
+ 2 \text{subsym}[(P^{-1} \cdot e_i) \otimes (P^{\prime} \cdot e_j) \otimes (P^{\prime} \cdot e_k) P^{-1} \cdot P^e_\cdot]\} \\
= P^{\prime} \circ K^e_\cdot + P^e_\cdot \cdot P^{-1} \cdot P^e_\cdot (K_e - P) + 2 \text{subsym} [(K_e - P) \cdot P^{-1} \cdot P^e_\cdot]
\]

the term with \text{subsym} being the symmetric part with respect to the right subsymmetry. We substitute this into \(2.105\) to obtain

\[
\tau_i = 1/\rho_0 \left\{ \frac{1}{2} k_0(C_e, K_c) \cdot \{C^e_\cdot - 2 \text{sym}(C_e \cdot P^{-1} \cdot P^e_\cdot)\} \\
+ K_0(C_e, K_c) \cdot \{K^e_\cdot - P^e_\cdot \cdot P^{-1} \cdot P^e_\cdot (K_e - P) - 2 \text{subsym} [(K_e - P) \cdot P^{-1} \cdot P^e_\cdot]\}\right\}
\]

and because of the symmetries of the stress tensors

\[
= 1/\rho_0 \left\{ \frac{1}{2} k_0(C_e, K_c) \cdot \{C^e_\cdot - 2 \text{sym}(C_e \cdot P^{-1} \cdot P^e_\cdot)\} \\
+ K_0(C_e, K_c) \cdot \{K^e_\cdot - P^e_\cdot \cdot P^{-1} \cdot P^e_\cdot (K_e - P) - 2 \text{subsym} [(K_e - P) \cdot P^{-1} \cdot P^e_\cdot]\}\right\}
\]

\[
= 1/\rho_0 \left\{ \frac{1}{2} k_0(C_e, K_c) \cdot \{C^e_\cdot - 2 \text{sym}(C_e \cdot P^{-1} \cdot P^e_\cdot)\} \\
+ K_0(C_e, K_c) \cdot \{C^e_\cdot + K_0(C_e, K_c) \cdot K^e_\cdot \\
- \frac{1}{2} k_0(C_e, K_c) \cdot (2 C_e \cdot P^{-1} \cdot P^e_\cdot)\}
\right\}
\]

\[(2.110) \quad K_0(C_e, K_c) \cdot \{P^e_\cdot - P^{-1} \cdot P^e_\cdot (K_e - P) + 2 \text{subsym} [(K_e - P) \cdot P^{-1} \cdot P^e_\cdot]\}
\]

\[
= \partial C w_0(C_e, K_c) \cdot \{C^e_\cdot + \partial K w_0(C_e, K_c) \cdot K^e_\cdot \\
- \frac{1}{2} k_0(C_e, K_c) \cdot (2 C_e \cdot P^{-1} \cdot P^e_\cdot) \\
- K_0(C_e, K_c) \cdot \{P^e_\cdot - P^{-1} \cdot P^e_\cdot (K_e - P) + 2 \text{subsym} [(K_e - P) \cdot P^{-1} \cdot P^e_\cdot]\}
\]

\[
= w_0(C_e, K_c) \cdot \{P^e_\cdot - P^{-1} \cdot P^e_\cdot (K_e - P) + 2 \text{subsym} [(K_e - P) \cdot P^{-1} \cdot P^e_\cdot]\}
\]

\[
\text{with the plastic stress tensor}
\]

\[(2.111) \quad S_p := - P^{-T} \cdot C_e \cdot k_0(C_e, K_c) = - P^{-T} \cdot P^{\prime} \cdot C \cdot P \cdot P^{-1} \cdot S \cdot P^{-T} = - C \cdot S \cdot P^{-T}
\]

and plastic hyperstress tensor defined as

\[(2.112) \quad S_p := - K_0(C_e, K_c) = - P^{-1} \circ S.
\]

According to \(2.110\) the stress power goes into a change of the elastic reference energy and a dissipative part that is only active during yielding, and works on the rates \(P^e_\cdot\) and \(P^e_\cdot\).

Flow and Hardening Rules
For the evolution of the internal plastic variables P, P, Z_p evolution equations are needed, namely two flow rules
\begin{align}
\text{(2.113)} & \quad P^* = f(P, P, C, K, Z_p, C^*, K^*) \\
\text{(2.114)} & \quad P^* = F(P, P, C, K, Z_p, C^*, K^*)
\end{align}
and a hardening rule
\begin{align}
\text{(2.115)} & \quad Z_p^* = h(P, P, C, K, Z_p, C^*, K^*)
\end{align}
all assumed to be in the form of rate-independent ODEs as customary in plasticity. This can be assured in the usual way by the introduction of a plastic consistency parameter $\lambda \geq 0$
\begin{align}
\text{(2.116)} & \quad P^* = \lambda f^*(P, P, C, K, Z_p, C^0, K^0) \\
\text{(2.117)} & \quad P^* = \lambda F^*(P, P, C, K, Z_p, C^0, K^0) \\
\text{(2.118)} & \quad Z_p^* = \lambda h^*(P, P, C, K, Z_p, C^0, K^0)
\end{align}
where we normed the increments of the kinematical variables
\begin{align}
\text{(2.119)} & \quad C^0 := C^*/\mu \quad \text{and} \quad K^0 := K^*/\mu
\end{align}
by a factor
\begin{align}
\text{(2.120)} & \quad \mu := \sqrt{\left| C^* \right|^2 + L^2 \left| K^* \right|^2}
\end{align}
which is (only) positive during yielding. The positive constant L with the dimension of a length is necessary for dimensional reasons and controls the ratio of yielding due to C^* and K^*.

We introduced three functions f^0, F^0, h^0, which give the directions of the flow and hardening, while the amount is finally determined by the consistency parameter. The consistency parameter is zero during elastic processes. During yielding it can be calculated by the yield condition (2.103)
\begin{align}
0 = & \quad \varphi(P, P, C, K, Z_p)^* \\
= & \quad \partial_P \varphi \cdot P^* + \partial_P \varphi \cdot P^* + \partial_C \varphi \cdot C^* + \partial_K \varphi \cdot K^* + \partial_{Z_p} \varphi \cdot Z_p^*
\end{align}
by (2.116) - (2.118)
\begin{align}
\text{(2.121)} & \quad = \partial_P \varphi \cdot \lambda f^*(P, P, C, K, Z_p, C^0, K^0) + \partial_P \varphi \cdot \lambda F^*(P, P, C, K, Z_p, C^0, K^0) \\
& \quad + \partial_C \varphi \cdot C^* + \partial_K \varphi \cdot K^* + \partial_{Z_p} \varphi \cdot \lambda h^*(P, P, C, K, Z_p, C^0, K^0)
\end{align}
which gives the quotient
\begin{align}
\text{(2.122)} & \quad \lambda = \frac{1}{[\partial_C \varphi \cdot C^* + \partial_K \varphi \cdot K^*]/} \\
& \quad \frac{[\partial_P \varphi \cdot f^*(P, P, C, K, Z_p, C^0, K^0) + \partial_P \varphi \cdot F^*(P, P, C, K_p, Z, C^0, K^0) \quad + \partial_{Z_p} \varphi \cdot h^*(P, P, C, K, Z_p, C^0, K^0)]}.\end{align}
Both, numerator and denominator of this ratio are always negative during yielding as a consequence of the loading condition (2.104), and, thus, λ is positive in this case.
If we substitute this value of λ into (2.116) - (2.118), we obtain the **consistent flow and hardening rules**. In all cases (elastic and plastic), the KUHN-TUCKER condition

$$\lambda \varphi = 0 \quad \text{with} \quad \lambda \geq 0 \quad \text{and} \quad \varphi \leq 0$$

holds since at any time one of the two factors is zero.

Example. von MISES plasticity extended

As an example we use a generalization of the anisotropic v. MISES yield criterion\(^{33}\) in the stress space\(^{34}\)

$$\varphi(S, S^3) = \frac{1}{2}(S - S_B) \cdot G \cdot (S - S_B) + \frac{1}{2}(S^3 - S^3_B) : G : (S - S_B)$$

$$+ (S - S_B) \cdot G^6 : (S - S_B) - \sigma_Y(Z_p)^2$$

with three material tensors $G^{(4)}, G^{(5)}$, and $G^{(6)}$ reflecting the symmetry of the material, two back stresses S_B and S^3_B, and a scalar yield stress σ_Y, which may depend on a hardening variable controlling isotropic hardening. This yield criterion lives in the stress space. However, by the elastic laws (2.90) and (2.91) it can be transformed into the strain space.

The **associated flow rules** are

$$P^* = \lambda \partial S \varphi = \lambda \{ G^{(4)} : [S - S_B] + G^{(5)} : [S^3 - S^3_B] \}$$

$$P^* = \lambda \partial \varphi / \partial S = \lambda \{ G^6 : [S - S_B] + [S - S_B] \cdot G^{(6)} \}.$$

\(^{33}\) v. MISES (1928)

\(^{34}\) see BERTRAM/ FOREST (2014)
2.3 Finite Gradient Thermoelasticity

This chapter is mainly based on

GURTIN (1965)\(^{35}\) has once shown that non-local elastic materials (other than simple elastic materials) cannot exist because of a violation of the CLAUSIUS-DUHEM inequality. However, this surprising conclusion is due to an inadequate format, in which higher-order stress tensors are not taken into account.

In the present work, we will show that for a more general format such materials can exist in a thermodynamical consistent form, and the second law gives the thermoelastic potentials and reasonable restrictions upon the yield and hardening rules in the case of plasticity.

There are not many papers yet concerning the thermodynamics of gradient elasticity and plasticity like, e.g., POLIZZOTTO/ BORINO (1998), POLIZZOTTO (2003), (2011), HIRSCHBERGER/ STEINMANN (2009), GURTIN/ ANAND (2010), IEŞAN/ QUINTANILLA (2013) . In VÁN/ BEREZOVSKI/ PAPENFUSS (2013) a thermodynamic theory of weakly non-local continua is presented. It is specified for linear viscoelasticity and elasticity, an approach, however, that is rather different in assumptions and methodology from the present one.\(^{36}\) CLAYTON/ McDOWELL/ BAMMANN (2006) suggest a thermodynamic theory for gradient and polar plasticity that works on different scales, which is, however, beyond the scope of the present paper.

With respect to the mechanical properties we tried to find a format that is as wide as possible to cover essentially all kinds of gradient elasticity and unconstrained plasticity, isotropic or anisotropic. With respect to the thermodynamics, however, we follow the traditional lines of FOURIER and CLAUSIUS and DUHEM without introducing any non-classical concepts like, e.g., BUCHÁČEK (1971), CARDONA/ FOREST/ SIEVERT (1999) or FOREST/ AIFANTIS (2010) did.

The step from a purely mechanical theory in the preceding chapter to thermodynamics follows the lines of BERTRAM/ KRAWIETZ (2012) for classical thermoplasticity, and BERTRAM/ FOREST (2014) for the geometrically linear gradient plasticity.

This thermomechanical part of a gradient theory is organized as follows. After introducing the complete set of thermodynamical variables, we are able to define a general thermoelastic material of gradient type. This can be brought into a reduced form, thus allowing for the *Principle of Invariance under Rigid Body Modifications*. The CLAUSIUS-DUHEM inequality renders the potential relations for the stresses and the hyperstresses. After working out the

\(^{35}\) see also DUNN/SERRIN (1985)

\(^{36}\) see also PAPENFUSS/ FOREST (2006)
transformations of the constitutive equations under a change of the reference placement, we are able to define the symmetry transformations for such material models.

For a thermodynamical theory we introduce the following fields:

- \(\varepsilon \) the specific internal energy
- \(Q \) the heat supply per unit mass and time by irradiation and conduction
- \(q \) the spatial heat flux per unit area in the current placement and unit time forming one part of \(Q \)
- \(\theta \) the absolute temperature
- \(g_0 := \text{Grad} \ \theta \) the material temperature gradient
- \(\eta \) the specific entropy

The material heat flux per unit time and per unit area in the reference placement is then

\[
q_0 = JF^{-1} \cdot qE.
\]

A change of the reference placement will yield due to (2.36)

\[
g_0 = AT \cdot g_0 = AT^*g_0
\]

\[
q_0 = JA^{-1} \cdot q_0 = A^{-1}JA q_0
\]

while the values of the scalar variables \(\varepsilon, Q, \theta, \eta \) remain unaltered.

As usual we can substitute the internal energy by the HELMHOLTZ free energy

\[
\psi := \varepsilon - \theta \eta.
\]

The first law of thermodynamics (energy balance) in the local form is assumed as

\[
Q + \pi = \varepsilon^*.
\]

The second law of thermodynamics is assumed in the form of the CLAUSIUS-DUHEM inequality

\[
\pi - \psi^* - \theta^* \eta - \frac{1}{\rho_0 \theta} q_0 \cdot g_0 \geq 0.
\]

The last term in the inequality is the thermal dissipation, while the other three terms stand for the mechanical dissipation.

The independent material variables of this theory are given by the thermo-kinematical processes which we denote as

\[
\{\chi(\tau), F(\tau), \text{Grad} F(\tau), \theta(\tau), \text{grad} \ \theta(\tau)\}_{\tau=0}^t
\]

where the time-variable \(\tau \) runs over a finite closed time-interval \([0, t]\). In the general case of inelastic gradient materials it is assumed that such a process out of a particular initial state determines (by means of a process functional) the caloro-dynamic state at its end consisting of the stresses, the heat flux, the internal energy, and the entropy.
Elasticity means that the current thermo-kinematical state already determines the current caloro-dynamic state, without any memory of the past process.

Definition 2.6. A thermoelastic second-order gradient material is given by thermoelastic laws

\[
\begin{align*}
T &= t_E(\chi, F, \text{Grad } F, \theta, \text{grad } \theta) \\
\mathcal{T} &= T_E(\chi, F, \text{Grad } F, \theta, \text{grad } \theta) \\
q &= q_E(\chi, F, \text{Grad } F, \theta, \text{grad } \theta) \\
\varepsilon &= \varepsilon_E(\chi, F, \text{Grad } F, \theta, \text{grad } \theta) \\
\eta &= \eta_E(\chi, F, \text{Grad } F, \theta, \text{grad } \theta)
\end{align*}
\]

where all variables are taken at the same material point at the same instant of time. The suffix \(E\) stands for elastic.

This format fulfils the *Principle of Equipresence* as it is usually claimed for.

These constitutive equations can be further reduced by means of the *Principle of Invariance under Rigid Body Modifications* \(^{37}\). As one can easily show, a reduced form for this set of constitutive equations is

\[
\begin{align*}
S &= k(C, K, \theta, g_0) \\
\mathcal{S} &= K(C, K, \theta, g_0) \\
q_0 &= q(C, K, \theta, g_0) \\
\varepsilon &= \varepsilon(C, K, \theta, g_0) \\
\eta &= \eta(C, K, \theta, g_0)
\end{align*}
\]

with \((C, K, \theta, g_0) \in \Conf \times \mathbb{R}^3 \times \mathbb{V}^3\), where exclusively material (or LAGRANGean) variables have been used, which remain invariant under changes of observer and rigid body modifications.

The H**ELMHOLTZ** free energy is after (2.130) also a function of the reduced thermo-kinematical state

\[
\psi(C, K, \theta, g_0) := \varepsilon(C, K, \theta, g_0) - \theta \eta(C, K, \theta, g_0).
\]

We will next investigate the consequences of the second law of thermodynamics in the form of the CLAUSIUS-DUHEM inequality (2.132) for this class of elastic materials

\[
\theta \geq -\frac{1}{\rho_0} (\frac{1}{2} \mathbf{S} : \mathbf{C}^* + \mathcal{S} : \mathbf{K}^*) + \partial_C \psi : \mathbf{C}^* + \partial_K \psi : \mathbf{K}^* + \partial_\theta \psi : \mathbf{\theta}^* + \partial_{g_0} \psi : \mathbf{g_0}^*
\]

\(^{37}\) see BERTRAM/SVENDSEN (2001), and BERTRAM (2005), therein called PISM
\[+ \theta^* \eta + \frac{1}{\rho_0 \theta} \mathbf{q}_0 \cdot \mathbf{g}_0 \]

\[= (\partial_C \psi - \frac{1}{2 \rho_0} \mathbf{S}) \mathbf{C}^* + (\partial_K \psi - \frac{1}{\rho_0} \mathbf{S}) \mathbf{K}^* + (\partial_\theta \psi + \eta) \theta^* + \partial_{g_0} \psi \cdot \mathbf{g}_0^* \]

\[+ \frac{1}{\rho_0 \theta} \mathbf{q}_0 \cdot \mathbf{g}_0 . \]

This leads by standard arguments to the thermoelastic relations

(2.137) \(\partial_{g_0} \psi = 0 \) (independence of the free energy of the temperature gradient)

(2.138) \(k(C, K, \theta) = 2\rho_0 \partial_C \psi \) (potential for the stresses)

(2.139) \(K(C, K, \theta) = \rho_0 \partial_K \psi \) (potential for the hyperstresses)

(2.140) \(\eta = -\partial_\theta \psi \) (potential for the entropy)

(2.141) \(0 \geq \mathbf{q}_0 \cdot \mathbf{g}_0 \) (heat conduction inequality).

Theorem 2.3. The CLAUSIUS-DUHEM inequality (2.132) is fulfilled for a thermoelastic gradient material during every thermo-kinematical process if and only if the following conditions hold.

- The free energy does not depend on the temperature gradient.
- The free energy is a potential for the stresses and the entropy after (2.138) - (2.140).
- The heat conduction inequality (2.141) holds at every instant.

Thus in elasticity, the complete material model is determined if we only know the two functions \(\psi(C, K, \theta) \) and \(q(C, K, \theta, g_0) \). The mechanical dissipation is here zero, while the thermal dissipation alone must be non-negative.

Material Isomorphy

We will next establish criteria to express the notion that two thermoelastic points consist of the same material. This is already the case if all the constitutive equations of the two points coincide. However, such a definition would be too restrictive, since we know that our variables depend on the choice of the reference placement. So we first have to admit an appropriate change of the reference placements, before we compare the constitutive equations. And since the mass density always influences the constitutive equations, we claim that the density in such reference placements must also be identical, at least in some neighbourhood of the points under consideration.

This leads to the concept of material isomorphisms. The basic idea behind this concept is the following\(^{38}\). We consider two thermoelastic points as isomorphic if their thermoelastic

\(^{38}\) see BERTRAM/KRAWIETZ (2012)
behaviour shows no measurable difference during arbitrary processes. As measurable quantities we consider the stresses (as a result of balance of moments), the heat flux, and the rate of the internal energy (as a result of the energy balance), while the entropy or the free energy are certainly not measurable.

For thermoelastic materials the mechanical dissipation is zero

\[\theta = \pi_i - \psi^* - \theta^* \eta = \pi_i - \varepsilon^* + \theta \eta^* = -Q + \theta \eta^* \]

using (2.130) - (2.131). If the heat supply \(Q \) and the temperature \(\theta \) are measurable quantities, then so is the rate of the entropy for thermoelastic materials. So the entropy of two isomorphic behaviour shows no measurable difference during arbitrary processes. As measurable quantities we consider the stresses (as a result of balance of moments), the heat flux, and the rate of the internal energy (as a result of the energy balance), while the entropy or the free energy are certainly not measurable.

For thermoelastic materials the mechanical dissipation is zero

\[\theta = \pi_i - \psi^* - \theta^* \eta = \pi_i - \varepsilon^* + \theta \eta^* = -Q + \theta \eta^* \]

using (2.130) - (2.131). If the heat supply \(Q \) and the temperature \(\theta \) are measurable quantities, then so is the rate of the entropy for thermoelastic materials. So the entropy of two isomorphic thermoelastic materials named \(X \) and \(Y \) can differ only by a constant, which can not be determined by any measurement, in principle,

\[\eta_Y(C_Y, K_Y, \theta) = \eta_X(C_X, K_X, \theta) + \eta_c \]

after an appropriate choice of the reference placements. By integrating this with respect to the temperature, we obtain for the free energy after (2.140)

\[\psi_Y(C_Y, K_Y, \theta) = \psi_X(C_X, K_X, \theta) - \eta_c \theta + \varepsilon_c \]

with another constant \(\varepsilon_c \). The internal energy is then by (2.130)

\[\varepsilon_Y(C_Y, K_Y, \theta) = \psi_Y(C_Y, K_Y, \theta) + \theta \eta_Y(C_X, K_X, \theta) \]

\[= \psi_X(C_X, K_X, \theta) + \theta \eta_X(C_X, K_X, \theta) + \varepsilon_c \]

\[= \varepsilon_X(C_X, K_X, \theta) + \varepsilon_c . \]

In the context of plasticity we will see that these constants play a rather important role.

This leads to the following definition.

Definition 2.7. Two thermoelastic points \(X \) and \(Y \) are called elastically isomorphic if we can find reference placements \(\kappa_X \) for \(X \) and \(\kappa_Y \) for \(Y \) such that the following three conditions hold.

- In \(\kappa_X \) and \(\kappa_Y \) the mass densities are equal
 \[\rho_\theta Y = \rho_\theta X. \]
- With respect to \(\kappa_X \) and \(\kappa_Y \) the thermoelastic laws are related by
 \[\psi_Y(C, K, \theta) = \psi_X(C, K, \theta) - \eta_c \theta + \varepsilon_c \quad \forall (C, K, \theta) \in \text{Conf} \times \mathbb{R}^+ \]
 \[q_Y(C, K, \theta, g_\theta) = q_X(C, K, \theta, g_\theta) \quad \forall (C, K, \theta, g_\theta) \in \text{Conf} \times \mathbb{R}^+ \times \mathbb{V}^3 \]

As a consequence of (2.138) - (2.140) this leads also to identities of the other constitutive equations

\[k_Y(C, K, \theta) = k_X(C, K, \theta) \]
\[K_Y(C, K, \theta) = K_X(C, K, \theta) \]
\[\eta_Y(C, K, \theta) = \eta_X(C, K, \theta) + \eta_c \]
\[\varepsilon_Y(C, K, \theta) = \varepsilon_X(C, K, \theta) + \varepsilon_c \quad \forall (C, K, \theta) \in \text{Conf} \times \mathbb{R}^+. \]
If two points are isomorphic in the above sense, one would consider them as consisting of the same **material**. In fact, the isomorphy condition induces an equivalence relation on all thermoelastic gradient materials, the equivalence classes of which constitute the different materials.

By arguments that have already been given for Theorem 2.1 in the mechanical case, one can then show that these conditions are equivalent to the following statement, which is much easier to handle than the one of the above definition.

Theorem 2.4. Two thermoelastic points X and Y with thermoelastic laws ψ_X, q_X and ψ_Y, q_Y with respect to arbitrary reference placements are elastically isomorphic if and only if there exist two tensors $(P, P) \in \text{InvComb}$ and two real constants ε_c and η_c such that

$$\rho_{0X} = \rho_{0Y} \det P$$

(2.153)

$$\psi_Y(C, K, \theta) = \psi_X(P^T \ast C, P^T \circ K + P, \theta) - \eta_c \theta + \varepsilon_c$$

$$(\det P)q_Y(C, K, \theta, g_\theta) = P \ast q_X(P^T \ast C, P^T \circ K + P, \theta, P^T \ast g_\theta)$$

hold for all $(C, K, \theta, g_\theta) \in \text{Conf} \times \mathbb{R}^+ \times \mathbb{V}^-$ with ρ_{0X} and ρ_{0Y} being the mass densities in the reference placements of X and Y, respectively.

Thus, the couple $(P, P) \in \text{InvComb}$ together with the reals ε_c and η_c determine the isomorphy transformation. If (2.153) hold, then we have also

$$\det (P) k_Y(C, K, \theta) = P \ast k_X(P^T \ast C, P^T \circ K + P, \theta)$$

$$\det (P) K_Y(C, K, \theta) = P \circ K_X(P^T \ast C, P^T \circ K + P, \theta)$$

(2.154)

$$\varepsilon_Y(C, K, \theta) = \varepsilon_X(P^T \ast C, P^T \circ K + P, \theta) + \varepsilon_c$$

$$\eta_Y(C, K, \theta) = \eta_X(P^T \ast C, P^T \circ K + P, \theta) + \eta_c$$

for all $(C, K, \theta) \in \text{Conf} \times \mathbb{R}^+$.

Material Symmetry

If we particularize the concept of isomorphy to identical points $X \equiv Y$, it defines automorphy or **symmetry**. In this case, we use only one reference placement. Therefore, the isomorphism P must be unimodular, and the two constants in the free energy and the entropy can be omitted.

Definition 2.8. For a thermoelastic gradient material with material laws ψ and q, a **symmetry transformation** is a pair $(A, A) \in \text{UnimComb}$ such that

$$\psi(C, K, \theta) = \psi(A^T \ast C, A^T \circ K + A, \theta)$$

(2.155)

$$q(C, K, \theta, g_\theta) = A \ast q(A^T \ast C, A^T \circ K + A, \theta, A^T \ast g_\theta)$$

for all $(C, K, \theta, g_\theta) \in \text{Conf} \times \mathbb{R}^+ \times \mathbb{V}^-$. As a consequence of (2.154) this leads to the symmetry transformations of the other constitutive equations
The set of all such symmetry transformations $(A, A) \in \text{UnimComb}$ represents the symmetry group of the material. This group is used to define isotropy or anisotropy classes in the same way as we did it in the mechanical setting before.

In cases of orthogonal symmetry transformations (Q, O) with $Q \in \text{Orth}$, we obtain using (2.44)

$$
A \ast k(C, K, \theta) = A \ast k(A^T \ast C, A^T \circ K + A, \theta)
$$

$$
A \ast K(C, K, \theta) = A \circ K(A^T \ast C, A^T \circ K + A, \theta)
$$

$$
A \ast \varepsilon(C, K, \theta) = \varepsilon(A^T \ast C, A^T \circ K + A, \theta)
$$

$$
A \ast \eta(C, K, \theta) = \eta(A^T \ast C, A^T \circ K + A, \theta)
$$

for all $(C, K, \theta, g_0) \in \text{Conf} \times \mathbb{R}^+ \times V^3$. Thus, for an isotropic/hemitropic material in an undistorted state, the elastic laws are isotropic/hemitropic tensor functions.
2.4 Finite Gradient Thermoplasticity

After having provided the thermoelastic theory, we are able to consider plasticity, starting with the concept of thermoelastic ranges. After the assumption that the (measurable) thermoelastic behaviour is not altered by plastic yielding, we can introduce plastic variables in a natural way. It turns out that both a multiplicative and an additive split of the strain variables is obtained. The exploitation of the CLAUSIUS-DUHEM inequality leads to necessary and sufficient conditions for thermodynamical consistency. A residual dissipation inequality restricts the flow and hardening rules in connection with the yield condition. Finally, we can derive a rate-equation for the temperature evolution due to elastic and plastic deformations. The entire section is restricted to rate-independent behaviour. And it is a second-order theory, higher-order gradients are not included.

For this class of materials, the concept of elastic ranges plays a fundamental role.

Definition 2.9. A (thermo)elastic range is a triple \(\{ \varepsilon_p, \psi_p, q_p \} \) consisting of

1) a non-empty and path-connected submanifold with boundary

\[
\mathcal{E}_p \subset \text{Conf} \times \mathbb{R}^+ \times \mathbb{V}^3
\]

of the space of the thermo-kinematical variables,

2) and thermoelastic laws \(\psi_p, q_p \) that give for all thermo-kinematical processes out of some initial state

\[
\{ C(\tau), K(\tau), \theta(\tau), g_0(\tau) \big|_0 \},
\]

which remain at all times in \(\mathcal{E}_p \), the calorody-namic state by thermoelastic laws

\[
\psi(t) = \psi_p(C(t), K(t), \theta(t))
\]

(2.158)

\[
q_p(t) = q_p(C(t), K(t), \theta(t), g_0(t))
\]

and, consequently,

\[
S(t) = 2\rho_0 \partial_C \psi_p(C(t), K(t), \theta(t))
\]

(2.159)

\[
\langle \delta \rangle \mathbf{S}(t) = \rho_0 \partial_K \psi_p(C(t), K(t), \theta(t))
\]

\[
\varepsilon(t) = \psi_p(C(t), K(t), \theta(t)) - \theta \partial_{\theta} \psi_p(C(t), K(t), \theta(t))
\]

\[
\eta(t) = -\partial_{\theta} \psi_p(C(t), K(t), \theta(t)).
\]

We assume further on that these functions are continuous and continuously differentiable on \(\mathcal{E}_p \), and as such extendible to \(\text{Conf} \times \mathbb{R}^+ \times \mathbb{V}^3 \).

Two assumptions are needed to specify elastoplastic behaviour.
Assumption 2.3. At the end of each thermo-kinematical process \(\{ C(\tau), K(\tau), \theta(\tau), g_0(\tau) \}_{t_0}^t \) of a thermoelastoplastic material point, there exists a thermoelastic range such that

- the terminate value of the process is contained in it
 \[\{ C(t), K(t), \theta(t), g_0(t) \} \in \mathcal{E}_p \]
- and the caloro-dynamic state is determined by its thermoelastic laws (2.158) and (2.159), the same as for any continuation of this process that remains in \(\mathcal{E}_p \) at all times.

For many materials it is a microphysically and experimentally well-substantiated fact that during yielding the elastic behaviour hardly alters even under large deformations, which will certainly not be the case for porous media, for foams, under damage, etc., but holds for most solid metals. This assumption reduces the effort for the identification tremendously, since otherwise one would have to identify the elastic constants at each step of the plastic deformation anew. We now give this assumption a precise form.

Assumption 2.4. The thermoelastic laws of all elastic ranges are isomorphic.

Note that this assumption only refers to the thermoelastic laws associated to the elastic range, and not to the set \(\mathcal{E}_p \) itself. So nothing is said here with respect to changes of the latter due to hardening or softening or the like.

If all elastic laws belonging to different elastic ranges are mutually isomorphic, then they all are isomorphic to some appropriately chosen elastic reference laws \(q_0, \psi_0 \). While the current elastic laws \(q_p, \psi_p \) vary with time during yielding, these reference laws can always be chosen as constant in time. We express this useful fact in the following theorem using Theorem 2.4.

Theorem 2.5. Let \(\psi_0 \) and \(q_0 \) be the elastic reference laws for an elasto-plastic gradient material. Then for each elastic range \(\{ \mathcal{E}_p, \psi_p, q_p \} \) there are two tensors \((P, P^\tau) \in \text{UnimComb} \) and two real constants \(\varepsilon_c \) and \(\eta_c \) such that

\[
\psi_p(\mathbf{C}, \mathbf{K}, \theta) = \psi_0(P^\tau \cdot \mathbf{C} \cdot P, P^\tau \circ \mathbf{K} + P, \theta) + \varepsilon_c - \theta \eta_c
\]

\[
q_p(\mathbf{C}, \mathbf{K}, \theta, g_0) = P \ast q_0(P^\tau \ast \mathbf{C}, P^\tau \circ \mathbf{K} + P, \theta, P^\tau \ast g_0)
\]

hold for all \(\mathbf{C}, \mathbf{K}, \theta, g_0 \in \text{Conf} \times \mathcal{R}^+ \times \mathcal{V}^3 \).
The time derivatives of these elastic variables will later be needed. They are

\[C^* = P^T \cdot C^- + 2 \, \text{sym}(C^- \cdot P^{-1} \cdot P^*) \]

where \(\text{sym} \) stands for the symmetric part of a dyadic, and

\[K^* = P^T \circ K^* + P^* \cdot P^{-1} \cdot P^* \cdot (K_e - P) + 2 \, \text{subsym} \left[(K_e - P) \cdot P^{-1} \cdot P^* \right] \]

where \(\text{subsym} \) stands for the symmetric part of a triadic with respect to the right subsymmetry.

As consequences of (2.138) - (2.140) we obtain the isomorphic forms for all constitutive equations

\[\psi = \psi_0(C^e, K^e, \theta) + \varepsilon_c - \theta \eta_c \]
\[S = P \ast 2 \rho_0 \partial C^e \psi_0(C^e, K^e, \theta) \]
\[\mathcal{S} = P \circ \rho_0 \partial K^e \psi_0(C^e, K^e, \theta) \]

(2.164)

\[\eta = \eta_0(C^e, K^e, \theta) + \eta_c \]
\[q_\theta = P \ast q_\theta(C^e, K^e, \theta, g_e) \]
\[\varepsilon = \varepsilon_0(C^e, K^e, \theta) + \varepsilon_c \]

with

\[\eta_0(C^e, K^e, \theta) := - \partial_\theta \psi_0(C^e, K^e, \theta) \]

and

\[\varepsilon_0(C^e, K^e, \theta) := \psi_0(C^e, K^e, \theta) - \theta \partial_\theta \psi_0(C^e, K^e, \theta) . \]
Yielding and Hardening

The boundary \(\partial E_p \) of some elastic range \(E_p \) is called yield limit or yield surface of the thermo-elastic range.

However, there is no material known for which the yield limit depends on the temperature gradient, so that \(E_p \) is assumed to be trivial in its last component \(\mathcal{V}^\perp \). In the sequel we will suppress this last component of \(E_p \), so that \(E_p \) is considered as a subset of only \(\text{Conf} \times \mathbb{R}^+ \). In order to practically describe such subsets we introduce the yield criterion as an indicator function. More precisely, a yield criterion associated with some thermoelastic range is a mapping

\[
\Phi_p : \text{Conf} \times \mathbb{R}^+ \to \mathbb{R} \quad \{C, K, \theta\} \mapsto \Phi_p(C, K, \theta)
\]

the kernel of which forms the yield surface

\[(2.165) \quad \Phi_p(C, K, \theta) = 0 \iff (C, K, \theta) \in \partial E_p.\]

We refer to the equation (2.165) as the yield condition. For the distinction of states in the interior \(E_p^o \) and beyond the thermo-elastic range, we demand

\[(2.166) \quad \Phi_p(C, K, \theta) < 0 \iff (C, K, \theta) \in E_p^o.\]

The loading condition is

\[(2.167) \quad \Phi_p(C, K, \theta) + \partial_C \Phi_p : C^* + \partial_K \Phi_p : K^* + \partial_\theta \Phi_p : \theta^* > 0.\]

Note that we defined the elastic ranges in the space of the independent variables, so that the yield criterion is expressed in terms of thermo-kinematical variables. If one prefers a description in the stress space, one can easily use the elastic laws (2.164) to transform them into the space of the caloro-dynamic variables.

Such a yield criterion is associated with a particular elastic range. A yield criterion can be found for every elastic range, but it is by no means unique. The differentiability may not be given for singular points like vertices of the yield surface. However, we will only refer to smooth yield surfaces in the rest of the text, for simplicity.

Up to now we only considered a yield criterion for one specific elastic range. We will next try to generalize this concept to all the other potential elastic ranges of the same material point. For the general yield criterion of all elastic ranges we use the ansatz \(\varphi(C, K, \theta, P, P, Z_\varphi) \) with hardening variables \(Z_\varphi \) assumed to be differentiable in all arguments so that

\[(2.168) \quad \Phi_p(C, K, \theta) = \varphi(C, K, \theta, P, P, Z_\varphi)\]

holds. \(Z_\varphi \) is a tensor of arbitrary order or even a vector of such tensors. For convenience, we notated it as a dyadic. The general form of the yield condition is then

\[(2.169) \quad \varphi(C, K, \theta, P, P, Z_\varphi) = 0\]

and the loading condition

\[(2.170) \quad \partial_C \varphi : C^* + \partial_K \varphi : K^* + \partial_\theta \varphi : \theta^* > 0,\]

which is not the complete time-derivative of \(\varphi \).
For the rate-independent flow and hardening rules we make the following ansatz
\[
P^* = \lambda p(C, K, \theta, g_0, P, P, Z_p, C^0, K^0, \theta^0)
\]
(2.171)
\[
P^* = \lambda P(C, K, \theta, g_0, P, P, Z_p, C^0, K^0, \theta^0)
\]
\[
Z_{p^*} = \lambda h(C, K, \theta, g_0, P, P, Z_p, C^0, K^0, \theta^0)
\]
with the increments of the thermo-kinematical variables
\[
(2.172) \quad C^0 : = C^*/\mu \quad K^0 : = K^*/\mu \quad \theta^0 : = \theta^*/\mu
\]
normed by a positive factor
\[
(2.173) \quad \mu : = \sqrt{\left| C^* \right|^2 + L^2 \left| K^* \right|^2 + \left| \theta^* \right|^2 / \theta_0^2}
\]
with respect to a freely chosen reference temperature θ_0, and a parameter L of dimension "length". The consistency parameter λ is assumed to have a switcher, which sets its values to zero if not both the yield criterion and the loading condition are simultaneously fulfilled. We introduce the abbreviations for the yield directions and for the hardening direction
\[
(2.174) \quad P^0 : = P^*/\lambda = p(C, K, \theta, g_0, P, P, Z_p, C^0, K^0, \theta^0)
\]
\[
P^0 : = P^*/\lambda = P(C, K, \theta, g_0, P, P, Z_p, C^0, K^0, \theta^0)
\]
\[
Z_{p^0} : = Z_{p^*}/\lambda = h(C, K, \theta, g_0, P, P, Z_p, C^0, K^0, \theta^0).
\]
As the yield condition must permanently hold during yielding, we obtain the consistency condition
\[
(2.175) \quad 0 = \varphi(C, K, \theta, P, P, Z_p)^* - 0
\]
\[
= \partial_C \varphi \cdot \cdot C^* + \partial_K \varphi \cdot \cdot K^* + \partial_\theta \varphi \cdot \cdot \theta^* + \partial_P \varphi \cdot \cdot P^* + \partial_{Z_p} \varphi \cdot \cdot Z_{p^*}
\]
\[
= \partial_C \varphi \cdot \cdot C^* + \partial_K \varphi \cdot \cdot K^* + \partial_\theta \varphi \cdot \cdot \theta^* + \partial_P \varphi \cdot \cdot \lambda P^0 + \partial_{Z_p} \varphi \cdot \cdot \lambda Z_{p^0}
\]
which allows us to determine the consistency parameter as the quotient
\[
(2.176) \quad \lambda(C, K, \theta, g_0, P, P, Z_p, C^*, K^*, \theta^*)
\]
\[
= - (\partial_C \varphi \cdot \cdot C^* + \partial_K \varphi \cdot \cdot K^* + \partial_\theta \varphi \cdot \cdot \theta^*)/(\partial_P \varphi \cdot \cdot P^0 + \partial_{Z_p} \varphi \cdot \cdot Z_{p^0}).
\]
Due to the loading condition (2.170), λ is positive during yielding. If we substitute λ into the rules (2.171), we obtain the consistent yield and hardening rules as rate forms for the internal variables. Because of the switcher in λ these are incrementally nonlinear, which is typical for elastoplasticity. However, for cases of yielding, λ is linear in the increments C^*, K^*, θ^*, which assures rate-independence. The KUHN-TUCKER condition holds
\[
(2.177) \quad \lambda \varphi = 0 \quad \text{with} \quad \lambda \geq 0 \quad \text{and} \quad \varphi \leq 0
\]
since at any time one of the two factors is zero.
Thermodynamic Consistency

The additive constants in the free energy and in the entropy ε_c and η_c must remain constant during elastic processes because of the assumption of isomorphic thermo-elastic ranges, and thus cannot depend on C, K, θ, or g_θ. They can only depend on those state variables that are constant during elastic processes, namely P, P, and Z_p. Consequently, after (2.164) we obtain

$$\psi = \psi_0(C_e, K_e, \theta) + \varepsilon_c(P, P, Z_p) - \theta \eta_c(P, P, Z_p)$$

(2.178)

$$\varepsilon = \varepsilon_0(C_e, K_e, \theta) + \varepsilon_c(P, P, Z_p)$$

$$\eta = \eta_0(C_e, K_e, \theta) + \eta_c(P, P, Z_p).$$

In the literature, an additive split of the free energy into elastic and plastic parts is often assumed. In the present context this is a consequence of the isomorphy assumption 2.4. Note that the plastic parts of the internal energy and the entropy cannot depend on the temperature, while the plastic part of the free energy

(2.179) $$\psi_\ell(P, P, \theta, Z_p) := \psi_c(P, P, Z_p) - \theta \eta_c(P, P, Z_p)$$

is linear in the temperature.

The material time-derivative of the free energy (2.178.1) is

(2.180) $$\dot{\psi}^* = \partial_{C_e} \psi_0 \cdot C_e^* + \partial_{K_e} \psi_0 \cdot K_e^* + \partial_{\theta} \psi_0 \cdot \theta^*$$

$$+ (\partial_{\varepsilon_c} \varepsilon_c - \theta \partial_{\theta} \eta_c) \cdot P^* + (\partial_{\varepsilon_c} \varepsilon_c - \theta \partial_{\theta} \eta_c) \cdot P^* - \theta \eta_c.$$

Without physical effect in the present setting, we assume the symmetry of $\partial_{C_e} \psi_0$ and the right subsymmetry of $\partial_{K_e} \psi_0$. By use of the rules (0.13) and (0.17) and of (2.162), (2.163), we continue

(2.181) $$\dot{\psi}^* = (P \ast \partial_{C_e} \psi_0) \cdot C_e^* + (P \circ \partial_{K_e} \psi_0) \cdot K_e^* + (\partial_{\theta} \psi_0 - \eta_c) \cdot \theta^*$$

$$+ \partial_{C_e} \psi_0 \ast (2 C_e P^{-1} P^*)$$

$$+ \partial_{K_e} \psi_0 \ast [P^* \ast P^{-1} \cdot P^* \cdot (K_e - P) + 2 (K_e - P) \cdot P^{-1} \cdot P^*]$$

$$+ (\partial_{\theta} \varepsilon_c - \theta \partial_{\theta} \eta_c) \cdot P^* + (\partial_{\theta} \varepsilon_c - \theta \partial_{\theta} \eta_c) \cdot P^* + (\partial_{Z_p} \varepsilon_c - \theta \partial_{\theta} \eta_c) \cdot Z_p^*.$$

We substitute this and the stress power density (2.24) into the CLAUSIUS-DUHEM inequality (2.132) using (2.160), (2.161), (2.178) and (2.179)

(2.182) $$\theta \geq \left[-\frac{1}{2 \rho_0} \mathbf{S} + \mathbf{P} \ast \partial_{C_e} \psi_0 \right] \cdot \mathbf{C}^* + \left[-\frac{1}{\rho_0} \mathbf{S} + \mathbf{P} \circ \partial_{K_e} \psi_0 \right] \cdot \mathbf{K}^*$$

$$+ [\partial_{\theta} \psi_0 + \eta_0] \theta^* + \frac{1}{\rho_0 \theta} \mathbf{q}_\theta \cdot \mathbf{g}_\theta.$$

39 see, e.g., EKH et al. (2007)
\[
+ \partial\psi_0 \cdot \partial C_e \psi_0 \cdot (2 C_e \cdot P^{-1} \cdot P^*)
+ \partial\psi_0 \cdot \partial K_e \psi_0 \cdot (-P^{-1} \cdot P^* \cdot (K_e - P) + 2 (K_e - P) \cdot P^{-1} \cdot P^*)
+ \partial P \cdot \psi_c \cdot \partial P^* + (\partial P \cdot \psi_c + \partial K_e \psi_0) \cdot P^* + \partial Z_p \psi_c \cdot Z_p^*.
\]

If we exploit this inequality first for cases without yielding \((P^* \equiv 0, P^* \equiv 0, Z_p^* \equiv 0)\), it leads again to the thermoelastic relations \((2.138) - (2.141)\) in the form

\[
(2.183) \quad S = P \ast 2\rho_0 \partial C_e \psi_0 \quad \text{(potential for the stresses)}
\]

\[
(2.184) \quad \langle S \rangle = P \circ \rho_0 \partial K_e \psi_0 \quad \text{(potential for the hyperstresses)}
\]

\[
(2.185) \quad \eta_0 = -\partial \theta \psi_0 \quad \text{(potential for the elastic part of the entropy)}
\]

\[
(2.186) \quad 0 \geq \mathbf{q}_0 \cdot \mathbf{g}_0 \quad \text{(heat conduction inequality)}.
\]

In the case of yielding, the above findings must still hold because of continuity. Additionally, we obtain the \textbf{residual dissipation inequality}

\[
0 \geq \partial C_e \psi_0 \cdot (2 C_e \cdot P^{-1} \cdot P^*)
+ \partial K_e \psi_0 \cdot (-P^{-1} \cdot P^* \cdot (K_e - P) + 2 (K_e - P) \cdot P^{-1} \cdot P^*)
+ \partial P \cdot \psi_c \cdot \partial P^* + (\partial P \cdot \psi_c + \partial K_e \psi_0) \cdot P^* + \partial Z_p \psi_c \cdot Z_p^*.
\]

or with a positive \(\lambda\) with \((2.174)\)

\[
0 \geq (2 P^{-T} \cdot C_e \cdot \partial C_e \psi_0 + \partial P \cdot \psi_c) \cdot P^*
+ \partial K_e \psi_0 \cdot [2 (K_e - P) \cdot P^{-1} \cdot P^* - P^{-1} \cdot P^* \cdot (K_e - P)]
+ (\partial K_e \psi_0 + \partial P \psi_c) \cdot P^* + \partial Z_p \psi_c \cdot Z_p^*.
\]

posing a restriction on the flow rules and the hardening rule \((2.171)\). Note that not each of these terms has to be negative, but only the sum of them. Thus, \textit{yield against the stresses} is not excluded by the second law\(^{40}\).

We state these findings in the following

\begin{theorem}
The CLAUSIUS-DUHEM inequality \((2.132)\) is fulfilled for a thermoelastoplastic gradient material during every thermo-kinematical process if and only if the free energy does not depend on the temperature gradient, and the conditions \((2.183) - (2.186)\) and the residual inequality \((2.188)\) hold.
\end{theorem}

The first conditions are familiar from thermo-elasticity. They must hold for the thermo-elastic reference laws, and are then automatically valid for all isomorphic laws, including the current ones.

The specific stress power \((2.24)\) becomes with the potentials \((2.183) - (2.185)\) and \((2.162) - (2.163)\)

\begin{thebibliography}
40 see the example in BERTRAM/ KRAWIETZ (2012) and BERTRAM/ FOREST (2014).
\end{thebibliography}
This can be split into a
\[\pi_0 = \partial_c \psi_0(C_e, K_e, \theta) \cdot (C_e^* - C_e \cdot P^{-l} \cdot P^*) + \partial_K \psi_0(C_e, K_e, \theta) \]
(2.189)

\[\therefore [K_e^* - P^* + P^{-l} \cdot P^* \cdot (K_e - P) - 2(K_e - P) \cdot P^{-l} \cdot P^*] = \psi_0(C_e, K_e, \theta)^* + \theta^* \eta_0(C_e, K_e, \theta) + S_p \cdot P^* \]

\[+ \left[S_p : [P^* - P^{-l} \cdot P^* \cdot (K_e - P) + 2(K_e - P) \cdot P^{-l} \cdot P^*] \right] \]

with the plastic stress and plastic hyperstress tensor defined as
(2.190)
\[S_p := - P^{-T} \cdot C_e \cdot \partial_c \psi_0(C_e, K_e, \theta) = - \frac{1}{2 \rho_0} C \cdot S \cdot P^{-T} \]
\[\left[S_p : [P^* - P^{-l} \cdot P^* \cdot (K_e - P) + 2(K_e - P) \cdot P^{-l} \cdot P^*] \right] \]

using (2.161), (2.183) and (2.184). Accordingly, the stress power is split into a part that is stored in the reference elastic free energy, and a dissipative part which works on the rates of the plastic transformations \(P^* \) and \(P^* \) (being linear in these rates), and is only active during yielding.

Temperature Changes

In order to determine the change of the temperature of the material point under consideration, we use the local form of the first law of thermodynamics with the heat supply \(Q \), which results from irradiation and conduction. We substitute the internal energy (2.178) and the stress power (2.189) into the energy balance (2.131)

(2.191)
\[Q = \varepsilon_0(C_e, K_e, \theta)^* + \varepsilon_0(P, P, Z_p)^* - \psi_0(C_e, K_e, \theta)^* + \theta^* \eta_0(C_e, K_e, \theta) - S_p \cdot P^* \]
\[- \left[S_p : [P^* - P^{-l} \cdot P^* \cdot (K_e - P) + 2(K_e - P) \cdot P^{-l} \cdot P^*] \right] \]

By using (2.130) for the elastic parts we get
(2.192)
\[Q = \theta \eta_0(C_e, K_e, \theta)^* + \varepsilon_0(P, P, Z_p)^* - S_p \cdot P^* - \left[S_p : [P^* - P^{-l} \cdot P^* \cdot (K_e - P) + 2(K_e - P) \cdot P^{-l} \cdot P^*] \right] \]

This can be split into a thermoelastic heat generation
(2.193)
\[Q_e := \theta \eta_0(C_e, K_e, \theta)^* = - \theta (R \cdot C_e^* + R \cdot K_e^*) + c \theta^* \]

with the abbreviations for
- the specific heat \(c(C_e, K_e, \theta) := \theta \partial_\theta \eta_0 \)
• the 2nd-order stress-temperature tensor

\[R(C_e, K_e, \theta) := -\partial_{C_e} \eta_0 \]

• the 3rd-order stress-temperature tensor

\[R(C_e, K_e, \theta) := -\partial_{K_e} \eta_0 \]

and a plastic heat generation

(2.194)

\[Q_p := \varepsilon_c(P, P, Z_p) - S_p \cdot P^* \]

\[- \left(S_p \cdot [P^* - P^{-1} \cdot P^* \cdot (K_e - P) + 2(K_e - P) \cdot P^{-1} \cdot P^*] \right). \]

This can be solved for the temperature change

(2.195)

\[\theta^* = \frac{1}{c} \{Q + \theta R \cdot C_e^* + \theta R \cdot (K_e^* - \varepsilon_c(P, P, Z_p)^*) \]

\[+ S_p \cdot P^* + \left(S_p \cdot [P^* - P^{-1} \cdot P^* \cdot (K_e - P) + 2(K_e - P) \cdot P^{-1} \cdot P^*] \right) \}. \]

By this equation, we can integrate the temperature along the process and so determine the final temperature after some arbitrary elasto-plastic process. Accordingly, temperature changes are caused by

• the heat supply \(Q \) from the outside;

• thermoelastic transformations due to the second and third term in (2.195);

• the heat \(Q_p \) generated by plastic yielding and hardening, which can be determined by use of the flow and hardening rules (2.171).
3. Material Theory of Third-Gradient Materials

This chapter is mainly based on

and

In the preceding chapter we described the elasticity and plasticity of gradient materials of order two. In what follows, we will consider the material theory for gradient materials of order three, and again particularize it for elasticity and plasticity.

The literature on third-order gradient material theory is rather limited, in particular under finite deformations. In GREEN/ RIVLIN (1964b) and CHEVERTON/ BEATTY (1975) such models are mentioned, MINDLIN (1965) suggested such materials within the scope of linear elasticity, just like JAVILI/ DELL'ISOLA/ STEINMANN (2013), DILLON/ KRATOCHVIL (1970), ZBIB/ AIFANTIS (1992), and many others for plasticity. WU (1992), FOREST/ CORDERO/ BUSSO (2011), CORDERO/ FOREST/ BUSSO (2016), and POLIZZOTTO (2013, 2014) use third-gradient models for the description of surface effects like capillarity. Another field of application of higher-order gradient theories is for the description of dislocation phenomena as in LAZAR/ MAUGIN/ AIFANTIS (2006) and LAZAR/ MAUGIN (2006).

The majority of these publications consider only the case of small deformations. Therefore there is a need for a unifying and thermodynamically consistent framework for elasticity and afterwards also for elastoplasticity of large deformations that can accommodate all these models. This is the subject of the present chapter.

With the introduction of a third gradient in the elastic constitutive equations, however, many questions arise and have to be answered. First of all, one has to introduce appropriate material (i.e., invariant) strain and stress measures, which is by no means straightforward in the context of finite deformations. Naturally, there are many equivalent choices, which are altogether mathematically equivalent. So one can choose such variables under a practical point of view, namely to render the constitutive framework as simple as possible. This allows us to introduce reduced forms for the constitutive equations that identically fulfil the invariance requirement.
Since such reduced forms live in the reference placement, a change of this placement has to be considered. After having established the transformations of all variables under change of reference placement, we are able to introduce the concept of material symmetry for such models. The symmetry transformations become much more complicated as in the case of simple or first-order materials, but still show the algebraic group property. This allows us to classify such models after their symmetry group. In particular, we can define centro-symmetric and isotropic behavior.

If we linearise such elastic laws, we obtain extensions of the classical ST.-VENANT-KIRCHHOFF law for third-order materials, i.e., physically linear laws, but geometrically still non-linear. In the general (anisotropic) case this leads to a total number of 1,485 independent elastic constants after (4.17). Again, by restricting our concern to the centro-symmetric isotropic case, this number can be drastically reduced to only 17 constants, including the two LAMÉ constants from classical linear elasticity.

After setting a framework for third-order elastic materials, we introduce third-order plasticity. This is again done by use of the concept of elastic range, yield criteria, flow and hardening rules, etc. in complete analogy to what we did in the previous chapter.

If one wants to assure thermodynamic consistency of such models, we have to imbed the mechanical theory into a complete thermodynamical setting. In doing so we again follow the lines of BERTRAM/FOREST (2014) and BERTRAM (2016). One would be tempted to not only include higher deformation gradients into the list of independent variables in the constitutive equations, but also higher temperature gradients. However, it has already be shown by PERZYNA (1971) that such dependencies are ruled out by the second law of thermodynamics. In the present setting, only the mechanical variables have been extended to non-classical ones, while the thermodynamics remain classical. We exploit the CLAUSIUS-DUHEM inequality and find necessary and sufficient conditions for it to hold. In particular, we find the potential relations of the free energy for the stress tensors and the entropy, as one would expect.

As in the preceding chapter, we choose as a starting point the stress power for introduction of stresses. While the leading two terms are already known from the second-gradient theory of the preceding chapter, here a new term comes into the game, namely the third-order velocity gradient, on which we will focus our concern here by adding it to the other ones.

The rest of this chapter consequently follows the lines of the previous chapter, just supplementing it by this additional third-order term. So it is recommended to first read the previous chapter and thereafter the present one.

These are the variables (fields) that are needed for such a theory:

- the specific body force \(\mathbf{b} \) after (1.128)
- the second-order stresses \(\mathbf{T}^{(2)} \)
- the third-order hyperstresses \(\mathbf{T}^{(3)} \)
- the fourth-order hyperstresses \(\mathbf{T}^{(4)} \)
For the specific body force we expect a gravitational or a magnetic law. For the three stress
tensors material laws are needed.

The third-order boundary value problem has already been defined in the last part of Chapt. 1.
Again, it is assumed that these laws are subject of the principles of material theory44 such as the

\begin{itemize}
 \item \textit{Principle of Determinism}
 \item \textit{Principle of Local Action}
 \item \textit{Principle of EUCLIDean Invariance} (or Objectivity)
 \item \textit{Principle of Invariance under Rigid Body Modifications}
 \item \textit{Principle of Thermodynamical Consistency}
\end{itemize}

These principles can be straightforwardly extended from simple materials or second-gradient
materials to third-gradient materials, as will be shown in the sequel.

The \textit{Principle of EUCLIDean Invariance} is already fulfilled by the statement of Theorem 1.17
that the higher-order stress tensors are objective. The other principles, however, lead to some
concretization of the constitutive format.

\section*{Third-Order Kinematics}

We now introduce the following notations exclusively for this chapter

\begin{equation}
\begin{aligned}
\text{Conf} & := \text{Psym} \times \text{Triad} \times \text{Tetrad} \\
\text{LinComb} & := \mathbb{V}^3 \times \text{Dyad} \times \text{Triad} \times \text{Tetrad} \\
\text{InvComb} & := \text{Inv} \times \text{Triad} \times \text{Tetrad} \\
\text{UnimComb} & := \text{Unim} \times \text{Triad} \times \text{Tetrad}
\end{aligned}
\end{equation}

As a starting point for our gradient theory we have chosen the stress power after (1.179) in
the following form

\begin{equation}(3.1)\Pi_i := \int_{\mathcal{B}_i} \left(\begin{smallmatrix} 2 \\ T \end{smallmatrix} \cdot \cdot \text{grad} \delta v + \begin{smallmatrix} 3 \\ T \end{smallmatrix} \cdot \cdot \text{grad}^2 \delta v + \begin{smallmatrix} 4 \\ T \end{smallmatrix} \cdot \cdot \text{grad}^3 \delta v \right) dV.
\end{equation}

\begin{smallmatrix} 2 \\ T \end{smallmatrix} \text{ is symmetric because of the balance of angular momentum (1.134), and the first term can be substituted by } \begin{smallmatrix} 2 \\ T \end{smallmatrix} \cdot \cdot \text{D} \text{ since only the symmetric part of the velocity gradient enters the stress power. The balance of angular momentum does not impose any restriction on } \begin{smallmatrix} 3 \\ T \end{smallmatrix} \text{ or } \begin{smallmatrix} 4 \\ T \end{smallmatrix}.
\text{grad}^2 \text{v has the right subsymmetry by definition.}

44\text{ see TRUESDELL/NOLL (1965), BERTRAM (2005), and many other books.}
\(\text{grad}^3 \mathbf{v} \) is subsymmetric in the last three entries by definition.

The same subsymmetries can be imposed on \(^{(2)} \mathbf{T} \) and \(^{(4)} \mathbf{T} \) without loss of generality within the present format.

Since \(\mathbf{D} \) and \(\text{grad}^2 \mathbf{v} \) and \(\text{grad}^3 \mathbf{v} \) are objective fields after (1.39), we can again conclude that the stress power is objective if and only if \(^{(2)} \mathbf{T}, ^{(3)} \mathbf{T}, \) and \(^{(4)} \mathbf{T} \) are also objective tensors.

We will now generate a material version of the stress power. For the first two terms this has already been done in (2.24), here repeated with a slightly different notation

\[
\pi_i = \frac{1}{\rho} (^{(2)} \mathbf{T} \cdot \text{grad} \delta \mathbf{v} + ^{(3)} \mathbf{T} : \text{grad}^2 \delta \mathbf{v})
\]

\[
= \frac{1}{\rho_0} J \left[^{(2)} \mathbf{T} \cdot (\mathbf{F}^{-T} \ast \frac{1}{2} \mathbf{C}^* + ^{(3)} \mathbf{T} : (\mathbf{F}^{-T} \circ \mathbf{K}^*)) \right]
\]

\[
= \frac{1}{\rho_0} \left[\frac{1}{2} J (\mathbf{F}^{-1} \ast ^{(2)} \mathbf{T}) \cdot \mathbf{C}^* + (\mathbf{F}^{-1} \circ J ^{(3)} \mathbf{T}) : \mathbf{K}^* \right]
\]

\[
= \frac{1}{\rho_0} [\frac{1}{2} S \cdot \mathbf{C}^* + S : \mathbf{K}^*]
\]

(2.24)

\[
\text{with the material stress tensors}
\]

\[
^{(2)} S : = \mathbf{F}^{-1} \ast J ^{(2)} \mathbf{T}
\]

(2.25)

\[
^{(3)} S : = \mathbf{F}^{-1} \circ J ^{(3)} \mathbf{T}
\]

(2.26)

So we only have to convert the last term \(^{(4)} \mathbf{T} : \text{grad}^3 \delta \mathbf{v} \) with the third-order velocity gradient into a material version. This will be done in the sequel

\[
\text{grad}^3 \delta \mathbf{v} = \text{grad}^2 (\mathbf{F}^* \cdot \mathbf{F}^{-1}) = \text{grad} [\text{Grad}(\mathbf{F}^* \cdot \mathbf{F}^{-1}) \cdot \mathbf{F}^{-1}]
\]

\[
= \text{Grad} [\text{Grad}(\mathbf{F}^* \cdot \mathbf{F}^{-1}) \cdot \mathbf{F}^{-1}] \cdot \mathbf{F}^{-1}
\]

\[
= \{\text{Grad} [\text{Grad}(\mathbf{F}^* \cdot \mathbf{F}^{-1}) \cdot \mathbf{F}^{-1}] \cdot \mathbf{F}^{-1}\}_{rstu} \mathbf{e}_r \otimes \mathbf{e}_s \otimes \mathbf{e}_t \otimes \mathbf{e}_u
\]

with respect to some ONB \(\{\mathbf{e}_r \otimes \mathbf{e}_s \otimes \mathbf{e}_t \otimes \mathbf{e}_u\} \). The components of this tetradic can be calculated in the following way

\[
\text{Grad} [\text{Grad}(\mathbf{F}^* \cdot \mathbf{F}^{-1}) \cdot \mathbf{F}^{-1}] = [\text{Grad}(\mathbf{F}^* \cdot \mathbf{F}^{-1}) \cdot \mathbf{F}^{-1}]_{rst}, a \mathbf{F}^{-1}_{au}
\]

\[
= [(\mathbf{F}^* \cdot \mathbf{F}^{-1})_{rs}, b \mathbf{F}^{-1}_{bt}]_{a} \mathbf{F}^{-1}_{au} = [(\mathbf{F}^*_{rc}, b \mathbf{F}^{-1}_{cs} + \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{cs}, b)]_{a} \mathbf{F}^{-1}_{au}
\]

\[
= (\mathbf{F}^*_{rc}, b \mathbf{F}^{-1}_{cs} + \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{cs}, b)_{a} \mathbf{F}^{-1}_{au} + (\mathbf{F}^*_{rc}, b \mathbf{F}^{-1}_{cs} + \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{cs}, b)_{b} \mathbf{F}^{-1}_{bt}, a \mathbf{F}^{-1}_{au}
\]

\[
= (\mathbf{F}^*_{rc}, b \mathbf{F}^{-1}_{cs} + \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{cs}, b, a + \mathbf{F}^*_{rc}, a \mathbf{F}^{-1}_{cs}, b + \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{cs}, b)_{a} \mathbf{F}^{-1}_{au} + (\mathbf{F}^*_{rc}, b \mathbf{F}^{-1}_{cs} + \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{cs}, b, a + \mathbf{F}^*_{rc}, a \mathbf{F}^{-1}_{cs}, b + \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{cs}, b)_{b} \mathbf{F}^{-1}_{bt}, a \mathbf{F}^{-1}_{au}
\]

By (2.7) and the rule

\[
\mathbf{F}^{-1}_{cs}, b = (\mathbf{F}^{-1}_{cd} \mathbf{F}_{de} + b \mathbf{F}^{-1}_{cs}, a)
\]

\[
= -\mathbf{F}^{-1}_{cd} a \mathbf{F}_{de} + b \mathbf{F}^{-1}_{es} - \mathbf{F}^{-1}_{cd} b \mathbf{F}_{de} a \mathbf{F}^{-1}_{es} - \mathbf{F}^{-1}_{cd} \mathbf{F}_{de} b \mathbf{F}^{-1}_{es}, a
\]
we continue with the above equation

\[\{ \text{Grad} \left[\text{Grad}(F^* \cdot F^{-1}) \cdot F^{-1} \right] \}_{\text{stu}} \]

\[= F^{-1}\text{rc,} \, ba \, F^{-1}\text{cd} \, F^{-1}\text{de} \, F^{-1}\text{es} \, F^{-1}\text{cd} \, F^{-1}\text{de} \, b \, F^{-1}\text{ef} \, F_{\text{fg}} \, a \, F^{-1}\text{gs} \]

The pull-back of this is

\[
F^T \circ \text{grad}^3 \delta \mathbf{v} = \{ F^{*}\text{rc,} \, ba \, F^{-1}\text{cs} \, F^{-1}\text{bt} \, F^{-1}\text{au} \, F^{-1}\text{mr} \, F_{\text{sn}} \, F_{\text{to}} \, F_{\text{up}} \}
\]

or componentwise

\[
F^{*}\text{rc,} \, ba \, F^{-1}\text{cs} \, F^{-1}\text{bt} \, F^{-1}\text{au} \, F^{-1}\text{mr} \, F_{\text{sn}} \, F_{\text{to}} \, F_{\text{up}}
\]

or again in direct notation

\[
F^T \circ \text{grad}^3 \delta \mathbf{v} = F^{-1} \cdot \text{grad}^2 \mathbf{F}^* - (F^{-1} \cdot F^* \cdot F^{-1} \cdot \text{grad}^2 \mathbf{F})
\]

\[- 3 \text{ sym}(F^{-1} \cdot \text{grad}^2 \mathbf{K})_{\text{mnop}} + 3 \text{ sym}(F^{-1} \cdot F^* \cdot \mathbf{K} \cdot \mathbf{K})_{\text{mnop}} \]
\[
= (F^{-l} \cdot \text{Grad}^2 F)^* - 3 \text{ sym}[(F^{-l} \cdot \text{Grad} F^* + F^{-l} \cdot \text{Grad} F) \cdot K] \\
= \langle^4 K\rangle^* - 3 \text{ sym}(\langle^3 K\rangle^* \cdot \langle^3 K\rangle)
\]

with

(3.7) \quad \langle^3 K\rangle := F^{-l} \cdot \text{Grad} F \quad \text{and} \quad \langle^4 K\rangle := F^{-l} \cdot \text{Grad}^2 F.

The following term completes the total stress power for a third-order material

(3.8) \quad \frac{1}{\rho} \mathbf{T} : \text{grad}^3 \delta \mathbf{v} = \frac{1}{\rho_0} \mathbf{T} : [F^{-T} \circ (\langle^4 K\rangle^* - 3 \text{ sym}(\langle^3 K\rangle^* \cdot \langle^3 K\rangle)]

\[
= \mathbf{S} : [\langle^3 K\rangle^* - 3 \text{ sym}(\langle^3 K\rangle^* \cdot \langle^3 K\rangle)]
\]

with a fourth-order material stress tensor

(3.9) \quad \langle^4 K\rangle := F^{-l} \circ J \mathbf{T}.

The last term can be reformulated

(3.10) \quad \mathbf{S} : \text{sym}(\langle^3 K\rangle^* \cdot \langle^3 K\rangle) = \mathbf{S}_{\text{abcd}} \text{sym}(\langle^3 K\rangle^*_{\text{abcd}} \langle^3 K\rangle_{\text{xc}}) = \mathbf{S}_{\text{abcd}} \langle^3 K\rangle_{\text{abcd}} \langle^3 K\rangle_{\text{xc}}

\[
= (\mathbf{S} \cdot \langle^3 K\rangle_{[13]}^*) : \langle^3 K\rangle^*
\]

taking into account the subsymmetries of the stresses in the last three entries. We add this to the stress power (2.24) of the second-order theory to obtain the complete stress power of a third-order theory

(3.11) \quad \pi_i = \frac{1}{\rho_0} \left\{ \frac{1}{2} \mathbf{S} \cdot \mathbf{C}^* + \mathbf{S} : \langle^3 K\rangle^* + \mathbf{S} : [\langle^4 K\rangle^* - 3 \text{ sym}(\langle^3 K\rangle^* \cdot \langle^3 K\rangle)] \right\}

\[
= \frac{1}{\rho_0} \left\{ \frac{1}{2} \mathbf{S} \cdot \mathbf{C}^* + (\mathbf{S} - 3 \mathbf{S} \cdot \langle^3 K\rangle) : \langle^3 K\rangle^* + \mathbf{S} : \langle^4 H\rangle^* \right\}
\]

with the interesting result that the fourth-order material stress tensor \langle^4 \mathbf{S}\rangle disperses into two parts, one working on \langle^4 K\rangle^*, and the other on \langle^3 K\rangle^*. This dispersion is a new feature of the third-gradient material which can be avoided for lower-order materials, as we have already seen in the previous chapter on second-order materials.

One could also introduce the combination \langle^3 \mathbf{S} - 3 \mathbf{S} \cdot \langle^3 K\rangle\rangle as a new third-order stress tensor.

The question arises whether a fourth-order material stress and strain tensor \langle^4 \mathbf{H}\rangle exists such that

(3.12) \quad \mathbf{T} : \text{grad}^3 \delta \mathbf{v} = \mathbf{S} : \langle^4 \mathbf{H}\rangle^*

would hold. Such a tensor would exist if \text{sym}(\langle^3 K\rangle^* \cdot \langle^3 K\rangle) was a complete differential so that we could write
(3.13) \[
\mathcal{G}^\text{d} = \text{sym}(\mathcal{K}^\text{3} \cdot \mathcal{K}) = \text{sym}[(\mathbf{F}^{-1} \cdot \text{Grad} \mathbf{F})^\text{d} \cdot (\mathbf{F}^{-1} \cdot \text{Grad} \mathbf{F})]
\]
\[= \text{sym}[\mathbf{F}^{-1} \cdot \text{Grad} \mathbf{F}^\text{d} \cdot \mathbf{F}^{-1} \cdot \text{Grad} \mathbf{F} + \mathbf{F}^{-1} \cdot \text{Grad} \mathbf{F} \cdot \mathbf{F}^{-1} \cdot \text{Grad} \mathbf{F}]
\]
\[= (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rf}, c \mathbf{F}^{-1}_{ci} \mathbf{F}_{ig}, h - (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{ci} \mathbf{F}_{if}, b \mathbf{F}^{-1}_{hk} \mathbf{F}_{kg}, h
\]
\[+ (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rg}, c \mathbf{F}^{-1}_{ci} \mathbf{F}_{ih}, f - (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{ci} \mathbf{F}_{ig}, j \mathbf{F}^{-1}_{jk} \mathbf{F}_{kh}, f
\]
\[+ (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rh}, c \mathbf{F}^{-1}_{ci} \mathbf{F}_{ig}, f - (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{ci} \mathbf{F}_{ih}, j \mathbf{F}^{-1}_{jk} \mathbf{F}_{kg}, f)
\]
\[\mathbf{e}_e \otimes \mathbf{e}_f \otimes \mathbf{e}_g \otimes \mathbf{e}_h.
\]
This tensor \(\mathcal{G}^\text{d}\) can be a function of \(\mathbf{F}^\text{d}, \text{Grad} \mathbf{F}^\text{d}, \text{Grad}^2 \mathbf{F}^\text{d}\). This would give in particular

(3.14) \[
(\partial \mathcal{G}^\text{d}_{efgh} / \partial \mathbf{F}_{rv}, u) \mathbf{F}^*_{rv}, u
\]
\[= (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rf}, c \mathbf{F}^{-1}_{ci} \mathbf{F}_{ig}, h + (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rg}, c \mathbf{F}^{-1}_{ci} \mathbf{F}_{ih}, f + (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rh}, c \mathbf{F}^{-1}_{ci} \mathbf{F}_{ig}, f
\]
\[= (\mathbf{F}^{-1})_{er} \mathbf{F}^{-1}_{ci} \mathbf{F}_{ig}, h + (\mathbf{F}^{-1})_{er} \mathbf{F}^*_{rc} \mathbf{F}^{-1}_{ci} \mathbf{F}_{ih}, f + \mathbf{F}^*_{rh}, c \mathbf{F}_{ig}, f)
\]
\[= (\mathbf{F}^{-1})_{er} \mathbf{F}^{-1}_{ui} (\mathbf{\delta}_e \mathbf{F}_{ig}, h + \mathbf{\delta}_g \mathbf{F}_{ih}, f + \mathbf{\delta}_h \mathbf{F}_{ig}, f) \mathbf{F}^*_{rv}, u
\]
so that

(3.15) \[
(\partial \mathcal{G}^\text{d}_{efgh} / \partial \mathbf{F}_{rv}, u) = (\mathbf{F}^{-1})_{er} \mathbf{F}^{-1}_{ui} (\mathbf{\delta}_e \mathbf{F}_{ig}, h + \mathbf{\delta}_g \mathbf{F}_{ih}, f + \mathbf{\delta}_h \mathbf{F}_{ig}, f)
\]
and the second derivative

(3.16) \[
(\partial^2 \mathcal{G}^\text{d}_{efgh} / \partial \mathbf{F}_{rv}, u \partial \mathbf{F}_{mn}, o)
\]
\[= (\mathbf{F}^{-1})_{er} \mathbf{F}^{-1}_{um} (\mathbf{\delta}_e \mathbf{\delta}_g \mathbf{\delta}_m + \mathbf{\delta}_g \mathbf{\delta}_h \mathbf{\delta}_o + \mathbf{\delta}_h \mathbf{\delta}_g \mathbf{\delta}_o).
\]

According to SCHWARZ’s theorem, the derivative must commute with respect to the index triples \(\{r, v, u\}\) and \(\{m, n, o\}\). This is obviously not the case. Therefore we conclude that the integrability condition is violated, and such a tensor \(\mathcal{G}^\text{d}\) does not exist.

In the present framework, the triple \(\{\mathbf{C}, \mathcal{K}, \mathcal{K}\}\) constitutes the local configuration space \(\text{conf}^\text{3}\), which is \(6 + 18 + 30 = 54\) dimensional after (4.4). The elements of \(\text{conf}^\text{3}\) are invariant under both changes of observer and rigid body modifications. The reference placement itself is characterized by \(\mathbf{C} = \mathbf{I}, \mathcal{K} = \mathcal{O}, \mathcal{K} = \mathcal{O}\).

On the other hand is the above choice of \(\mathcal{K}^\text{4}\) as the material fourth-order variable by no means unique. In fact, also \(\text{Grad} \mathcal{K}^\text{3}\) or \(\text{Grad}^2 \mathbf{C}\) would be possible choices as well that would lead to equivalent formats\(^{\text{45}}\). Our particular choice here was mainly preferred as it makes the further analysis as simple as possible.

\(^{\text{45}}\) In REIHER (2017) other choices of the kinematic variables are discussed.
Change of Reference Placement

The material variables of the above section are invariant under both changes of observer and superimposed rigid body motions. On the other hand, they strongly depend on the choice of the reference placement, which is arbitrary. So we have to study the behavior under changes of the reference placement.

Again we use the notations of (2.36) ff. If we use coordinates, we write for some differentiable field ϕ by applying the chain rule (2.36)

$$\phi_x^\prime = \phi_x A x^\prime$$

with $A := \text{Grad} (k_0 k_0^{-1}) \in \mathcal{M}_{oo}$. The change of the reference placement also induces two tensor fields

$$\mathcal{A} := A^{-1} \cdot \text{Grad} A$$

and

$$\mathcal{A} := A^{-1} \cdot \text{Grad}^2 A.$$

The transformation rules for \mathcal{C} and for \mathcal{K} have already been given in (2.37) and (2.39)

$$\mathcal{C} = A^T \cdot \mathcal{C} \cdot A = A^T \ast \mathcal{C}$$

(2.37)

$$\mathcal{K} = \mathcal{A} + A^T \circ \mathcal{K}.$$ (2.39)

For deriving the transformation rule for the fourth-order kinematical variable, we consider

$$\mathcal{K} = F^{-1} \cdot \text{Grad}^2 F = A^{-1} F^{-1} \cdot \text{Grad}^2 (F A)$$

and componentwise with respect to some Cartesian coordinate system

$$\mathcal{K}^{\prime} = A^{-1} F^{-1} \cdot \text{Grad}^2 (F A)$$

(3.19)

$$\mathcal{K}^{\prime} = \mathcal{K} + F^T \circ \mathcal{K}.$$ (3.20)

Now we apply the product and chain rule and (2.6) to

$$A_{cB}^{de} = A_{cB}^{de} [A^{-1} F^{-1}] + A_{cB}^{de} = A_{cB}^{de} [A_{cB}^{de} A_{dC}^{ef} + F_{bc} A_{cB}^{de} - A_{dC}^{ef} F_{bc}]$$

(3.21)

$$= A_{cB}^{de} [A_{cB}^{de} A_{dC}^{ef} + F_{bc} A_{cB}^{de} - A_{dC}^{ef} F_{bc}]$$

and continue the above equation.
\[(3.22) \] \[\mathbf{K}_{ABCD} = A^{-1} \bar{A} F^{-1} ab \left[F_{bc}, d A_{cB} A_{dC} A_{eD} + F_{bc}, d A_{cB} A_{dC} A_{eD} + F_{bc}, d A_{cB} A_{dC} A_{eD} \right] + F_{bc}, e A_{cB} A_{dC} A_{eD} + F_{bc}, e A_{cB} A_{dC} A_{eD} \]

\[+ F_{bc} (A_{cB} \bar{F} G A^{-1} F_{de} A_{cB} \bar{A} + A_{cB} \bar{A} + A_{cB} \bar{A} + A_{cB} \bar{A}) A_{dC} A_{eD} \]

\[+ F_{bc} A_{cB} + e A^{-1} F_{de} A_{dC} + \mathbf{A}^{-1} G A_{dC} A_{eD} \]

\[= A^{-1} \bar{A} F^{-1} ab F_{bc}, d A_{cB} A_{dC} A_{eD} + A^{-1} \bar{A} F^{-1} ab F_{bc}, d A_{cB} A_{dC} A_{eD} + A^{-1} \bar{A} F^{-1} ab F_{bc}, e A_{cB} A_{dC} A_{eD} \]

or in direct notation

\[(3.23) \] \[\mathbf{K} = \mathbf{A}^{T} \circ (\mathbf{K} + \mathbf{A} A) + 3 \text{sym}[\mathbf{A}^{T} \circ (\mathbf{K} + \mathbf{A})] \]

Eqs. (2.37), (2.39), and (3.23) constitute a differentiable bijection \(\alpha \) on the configuration space

\[\alpha : \text{Conf} \to \text{Conf} | (\mathbf{C}, \mathbf{K}, \mathbf{K}) \mapsto (\mathbf{C}, \mathbf{K}^{(3)}, \mathbf{K}^{(4)}) . \]

Its inverse is given by

\[(3.24) \]

\[\mathbf{C} = \mathbf{A}^{-T} \circ \mathbf{C} \]

\[\mathbf{K}^{(3)} = \mathbf{A}^{-T} \circ (\mathbf{K} - \mathbf{A}) \]

\[\mathbf{K}^{(4)} = \mathbf{A}^{-T} \circ (\mathbf{K} - \mathbf{A}) - 3 \text{sym}[\mathbf{A}^{T} \circ (\mathbf{K} - \mathbf{A})] \]

In analogy to (2.41) and (2.42) we find with (3.9) the transformation for the stress tensors as

\[(2.41) \] \[\mathbf{S}^{(2)} = \mathbf{A}^{T} \circ J_{A} \mathbf{S} \]

\[(2.42) \] \[\mathbf{S}^{(3)} = \mathbf{A}^{T} \circ J_{A} \mathbf{S} \]

\[(3.25) \] \[\mathbf{S}^{(4)} = \mathbf{A}^{T} \circ J_{A} \mathbf{S} \]
3.1 Finite Third-Order Gradient Elasticity

In contrast to the preceding chapter, we will not distinguish anymore between elasticity and hyperelasticity, but immediately start defining hyperelasticity.

Definition 3.1. We will call a material a **third-order (hyper)elastic material** if there exists a specific elastic energy

\[w(\chi, \text{Grad} \chi, \text{Grad} \text{Grad} \chi, \text{Grad} \text{Grad} \text{Grad} \chi) \]

where all variables have to be evaluated at the same point at the same instant of time, such that the specific stress power after (3.11) equals the rate of the elastic energy

(3.26) \[\pi_i = w^\star. \]

If we submit the power function to the *Principle of Invariance under Rigid Body Modifications* we obtain

\[w(C, K, K) \]

with \[w : \text{Conf} \rightarrow \mathbb{R} \]
as a possible reduced form of the power function.

We can now exploit (3.26) and obtain by standard arguments the potential relations for the stress tensors by comparison with (3.11)

\[\mathbf{S} = k_3(C, K) = 2\rho_0 \frac{\partial w(C, K)}{\partial C} \]

(3.27)

\[\mathbf{S} - 3 \mathbf{S} \cdot \mathbf{K}^{[13]} = \rho_0 \frac{\partial w(C, K)}{\partial K} \]

\[\mathbf{S}^4 = k_4(C, K) = \rho_0 \frac{\partial w(C, K)}{\partial K} \]

so that

\[\mathbf{S} = k_3(C, K) \]

\[: = \rho_0 \left[\frac{\partial w(C, K)}{\partial K} \right] \]

Note that this form of elastic laws already fulfills the following principles:

- **Principle of Determinism**
- **Principle of Local Action**
- **Principle of EUCLIDEAN Invariance** (or Objectivity)
- **Principle of Invariance under Rigid Body Modifications**

The thermodynamic consistency will be shown later.
Elastic Isomorphy

We will next extend the concept of elastic isomorphy from the second-gradient theory to the third-gradient theory. We will only briefly give the final results since this extension is straightforward.

Definition 3.2. Two elastic material points X and Y are called elastically isomorphic if we can find reference placements κ_X for X and κ_Y for Y such that the following two conditions hold.

- In κ_X and κ_Y the mass densities are equal
 \[\rho_{0X} = \rho_{0Y}. \]
 (3.28)

- With respect to κ_X and κ_Y the elastic energy laws are identical up to some constant $w_c \in \mathbb{R}$
 \[w_X(\kappa_X, \bullet) = w_Y(\kappa_Y, \bullet) + w_c. \]
 (3.29)

By an analogous reasoning that already lead to Theorem 2.1 using (2.37), (2.39), and (3.23), we can now state the following

Theorem 3.1. Two elastic material points X and Y with elastic energy laws w_X and w_Y with respect to arbitrary reference placements are elastically isomorphic if and only if there exist three tensors $(P, 3 P, 4 P) \in \text{InvComb}$ and a constant w_c such that

\[
\begin{align*}
\rho_{0X} &= \rho_{0Y}, \\
(w_Y)^{\kappa}(C, 3 K, 4 K) &= (w_X)^{\kappa}(P^T \ast C, P^T \circ K + P, P^T \circ K + P + 3 \text{ sym}[(P^T \circ 3 K) \cdot (4 P)]) + w_c
\end{align*}
\]

(3.30)

(3.31)

hold for all $(C, 3 K, 4 K) \in \text{Conf}$ with ρ_{0X} and ρ_{0Y} being the mass densities in the reference placements of X and Y, respectively.

For the derivation of the stress laws, we take the time derivative of (3.31)

\[
\begin{align*}
w_Y^{\kappa}(C, 3 K, 4 K)^* &= \partial w_Y^{\kappa}(C, 3 K, 4 K)/\partial C \ast \cdots C^* + \partial w_Y^{\kappa}(C, 3 K, 4 K)/\partial 3 K \ast \cdots 3 K^* + \partial w_Y^{\kappa}(C, 3 K, 4 K)/\partial 4 K \ast \cdots 4 K^* \\
&= w_X(P^T \ast C, P^T \circ K + P, P^T \circ K + P + 3 \text{ sym}[(P^T \circ 3 K) \cdot (4 P)])^* \\
&= (P \ast \partial w_X/\partial C) \ast \cdots C^* + (P \circ \partial w_X/\partial 3 K) \ast \cdots 3 K^* \\
&\quad + (P \circ \partial w_X/\partial 4 K) \ast \cdots 4 K^* + (3 \text{ sym}[(3 K \ast (P^T \circ 4 P)])
\end{align*}
\]

(3.32)
using (3.10)

\[
(P \ast \partial w_x / \partial C) \cdot C^* + \{ P \circ \partial w_x / \partial K + 3 (P^T \circ \partial w_x / \partial K) \cdot (P^{-T} \circ \bar{P}) \} \cdot K^*
\]

\[
+ (P \circ \partial w_x / \partial K) \cdot K^*
\]

which leads by comparison to

\[
(3.33) \quad S_y \cdot 2 \rho_{0Y} = \partial w_y (C, K, K) / \partial C = P \ast \partial w_x / \partial C = P \ast \bar{S}_x / 2 \rho_{0X}
\]

and with (3.27) and (3.30) to

\[
(3.34) \quad k_{2Y}(C, K, K) = det^{-1}(P) [P \ast k_{2X}(C, K, K)]
\]

\[
(3.35) \quad k_{3Y}(C, K, K) = det^{-1}(P) [P \circ k_{3X}(C, K, K)]
\]

\[
(3.36) \quad k_{4Y}(C, K, K) = det^{-1}(P) [P \circ k_{4X}(C, K, K)]
\]

with

\[
(3.37) \quad C := P^T \ast C
\]

\[
(3.38) \quad \bar{K} := P^T \circ K + \bar{K}
\]

\[
(3.39) \quad K^* := P^T \circ K + \bar{P} + 3 \text{sym} [(P^T \circ \bar{K}) \cdot \bar{P}]
\]

in analogy to (3.24), and with (3.27)

\[
(3.36) \quad k_{2Y}(C, K, K) = P \ast \{det^{-1}(P) 2 \rho_{0X} \partial w_x (C, K, K) / \partial C \]

\[
(3.37) \quad k_{3Y}(C, K, K) = P \circ \{det^{-1}(P) \rho_{0X} [\partial w_x (C, K, K) / \partial K]

\[
+ 3 \partial w_x (C, K, K) / \partial K \cdot K^{[13]} \}
\]

\[
(3.38) \quad k_{4Y}(C, K, K) = P \circ \{det^{-1}(P) \rho_{0X} \partial w_x (C, K, K) / \partial K \}
\]

Identical results can be obtained by directly using (2.41), (2.42), and (3.25).
Material Symmetry

If we particularize the concept of isomorphy to identical points \(X \equiv Y \), it defines automorphy or symmetry. In this case we consider only one point so that we can drop the point index, and denote the automorphism by \((A, \hat{A}, \AA) \in \text{InvComb}\) to distinguish from the isomorphisms of the previous section. Because of the first isomorphy condition, any automorphism must be unimodular in its first entry: \((A, \hat{A}, \AA) \in \text{UnimComb}\).

Moreover, if \(A \) is also unimodular in a neighbourhood of the point under consideration, we obtain

\[
\text{Grad} (\det A) = 0 = (\det A)^{\cdot} A^{-T} \cdot \text{Grad} A = A^{-T} \cdot \text{Grad} A
\]

(3.37)

\[
= I \cdot (A^{-I} \cdot \text{Grad} A) = I \cdot \hat{A}.
\]

So \(\hat{A} \) must be traceless in the first two entries. Moreover,

\[
\text{Grad} (I \cdot \hat{A}) = 0 = I \cdot \text{Grad} \hat{A} = I \cdot \text{Grad} (A^{-I} \cdot \text{Grad} A)
\]

(3.38)

\[
= I \cdot \left[A - (\hat{A} \cdot A)^{[24]} \right]
\]

must hold since the components with respect to some ONB are

\[
(\text{Grad} (A^{-I} \cdot \text{Grad} A))_{acde} = A^{-1}_{ab,c} A_{bc,d} + (A^{-I} \cdot \text{Grad Grad} A)_{acde}
\]

(3.39)

\[
= -A^{-1}_{af,g} A^{-I}_{gb,c} A_{bc,d} + (A^{-I} \cdot \text{Grad Grad} A)_{acde}
\]

\[
= -[A \cdot A)^{24} + (\hat{A})_{acde}.
\]

These conditions can be additionally imposed on the symmetry transformations. This leads us to the following definition using (3.32).

Definition 3.3. For a gradient hyperelastic material with elastic energy \(w \) a **symmetry transformation** is a triple \((A, \hat{A}, \AA) \in \text{UnimComb}\) such that

\[
w(C, K, \hat{K}) = w(A^T \cdot C, A^T \cdot K + \hat{A}, A^T \cdot \hat{K} + \AA + 3 \text{sym}[(A^T \cdot K) \cdot \hat{A}])
\]

(3.40)

for all \((C, K, \hat{K}) \in \text{Conf}\).

This gives with (3.34) and (3.35) the transformations for the elastic laws

\[
k_2(C, K, \hat{K}) = A \cdot k_2(C, K, \hat{K})
\]
\[(3.41) \quad k_3(C, K, K) = A \circ k_3(C, K, K) \]
\[k_4(C, K, K) = A \circ k_4(C, K, K) \]

with
\[C := A^T \ast C \]
\[(3.42) \quad K := A^T \circ K + A \]
\[\underline{K} := A^T \circ \underline{K} + A + 3 \text{ sym}[(A^T \circ K) \cdot \underline{A}] . \]

The set of all such symmetry transformations represented by such a triple \((A, A, A) \in \text{UnimComb}\) forms the **symmetry group** of the material. In fact, the transformation is a group under composition in the algebraic sense.

The composition of two elements \((A, A, A)\) and \((B, B, B) \in \text{UnimComb}\) is
\[(3.43) \quad (A, A, A) (B, B, B) = (A \cdot B, B^T \circ A + B, B^T \circ A + B + 3 \text{ sym}[(B^T \circ A) \cdot B]) \]

\[\in \text{UnimComb} , \] which does not commute.

Its identity is \((I, O, O) \in \text{UnimComb}\).

The inverse of some \((A, A, A) \in \text{UnimComb}\) is
\[(A^{-1}, -A^{-T} \circ A, -\{A^{-T} \circ \underline{A} - 3 \text{ sym}(A^{-T} \circ A)\}) \in \text{UnimComb} \]

since
\[(A, A, A) (A^{-1}, -A^{-T} \circ A, -\{A^{-T} \circ \underline{A} - 3 \text{ sym}(A^{-T} \circ A)\}) \]
\[= (A \cdot A^{-1}, A^{-T} \circ A - A^{-T} \circ A, A^{-T} \circ A - A^{-T} \circ \underline{A} - \{A^{-T} \circ \underline{A} - 3 \text{ sym}(A^{-T} \circ A)\}) \]
\[= (1, O, O) . \]

Up to now, little is known about the role of the triadic \(A\) and the tetradic \(A\) in the symmetry transformation. But we can learn from simple materials about the role of the dyadic \(A\).

For that purpose we consider symmetry transformations of the form \((Q, O, O)\) with \(Q \in \text{Orth}\). Such elements form a subgroup of the symmetry group and can be interpreted as rigid rotations and reflexions. If the symmetry group of a material contains all orthogonal dyadics in the first entry, we would call it **isotropic**. If it contains only the **proper**
orthogonal tensors, we call it **hemitropic**. These definitions apply not only to gradient thermoelasticity, but also to any inelastic gradient material in an analogous way.

Since we are dealing with even *and* odd-order tensors, this distinction does not cancel out in (3.40) - (3.42). Thus, for gradient materials improper symmetry transformations do play a non-trivial role, in contrast to simple materials. If a material contains with all proper symmetry transformations \((A, \bar{A}, \bar{A})\) also the corresponding improper ones \((-A, \bar{A}, \bar{A})\), it is called **centro-symmetric**. So isotropy is hemitropy plus centro-symmetry.

In the case of isotropy we obtain after (3.42) for the elastic energy with respect to undistorted states

\[
(3.45) \quad w(C, K, K) = w(Q * C, Q * K, Q * K)
\]

i.e., an isotropic tensor function. For the stress laws we obtain in this case after (3.41) and (3.42)

\[
(3.46) \quad Q * k_2(C, K, K) = k_2(Q * C, Q * K, Q * K)
\]

\[
Q * k_3(C, K, K) = k_3(Q * C, Q * K, Q * K)
\]

\[
Q * k_4(C, K, K) = k_4(Q * C, Q * K, Q * K) \quad \forall (C, K, K) \in \text{Conf.}
\]

Thus, for an isotropic material the elastic laws are isotropic tensor functions.
Finite Third-Order Linear Elasticity

For many applications the elastic deformations are rather small, which justifies the linearization of the hyperelastic laws. In order to avoid the introduction of new notations like a generalized VOIGT notation, we use a tensor notation.

In the physically linear hyperelasticity theory, the elastic energy is assumed to be a symmetric square form of the strains. If the reference placement is chosen as stress free (unloaded), we consider configurations like \((E^G, K, K) \) with a small GREEN strain tensor
\[
E^G := \frac{1}{2} (C - I) \in \mathcal{L}_{sym}
\]
and small \(K \) and \(K \), which means that
\[
|E^G| << 1 \quad \text{and} \quad L |K| << 1 \quad \text{and} \quad L^2 |K| << 1
\]
with a scaling parameter \(L \) of dimension length. In tensor notations such a square form can be represented by
\[
\rho_0 w = \frac{1}{2} E^{(4)}_{22} \cdot E^{(4)}_{22} + E^{(4)}_{23} \cdot E^{(4)}_{23} \cdot K + E^{(6)}_{24} \cdot E^{(6)}_{24} \cdot K
\]
\[
+ \frac{1}{2} K \cdot E^{(4)}_{33} \cdot K + K \cdot E^{(4)}_{34} \cdot K
\]
\[
+ \frac{1}{2} K \cdot E^{(8)}_{44} \cdot K
\]
with higher-order elasticity tensors \(E^{(4)}_{22}, E^{(4)}_{23}, E^{(4)}_{24}, E^{(5)}_{33}, E^{(6)}_{34}, E^{(8)}_{44} \).

These elasticities can be submitted to the following symmetry conditions:

\(E^{(4)}_{22} \):
- left subsymmetry \(\{ij \ kl\} = \{ji \ kl\} \)
- right subsymmetry \(\{ij \ kl\} = \{ij \ lk\} \)
- and the major symmetry \(\{ij \ kl\} = \{kl \ ji\} \)

with 21 independent constants as customary from classical elasticity

\(E^{(5)}_{23} \):
- left subsymmetry \(\{ij \ klm\} = \{ji \ klm\} \)
- right subsymmetry \(\{ij \ klm\} = \{ij \ kml\} \)

with \(6 \times 18 = 108 \) independent parameters after (4.4)
with $6 \times 30 = 180$ independent parameters after (4.4)

$E^{(6)}_{33}$:
- left subsymmetry $\{ijk lmn\} = \{ikj lmn\}$
- right subsymmetry $\{ijk lmn\} = \{ijk lnm\}$
- and major symmetry $\{ijk lmn\} = \{lmn ijk\}$

with $18^2/2 + 18/2 = 171$ independent parameters

$E^{(7)}_{34}$:
- left subsymmetry $\{ijk lmno\} = \{ikj lmno\}$
- right subsymmetries $\{ijk lmno\} = \{ijk lmon\} = \{ijk lmno\}$

with $18 \times 30 = 540$ independent parameters

$E^{(8)}_{44}$:
- left subsymmetries $\{ijkl mnop\} = \{ijlk mnop\} = \{ikjl mnop\}$
- right subsymmetries $\{ijkl mnop\} = \{ijkl mno\} = \{ijkl mon\}$
- and major symmetry $\{ijkl mnop\} = \{mnoj ikl\}$

with $30^2/2 + 30/2 = 465$ independent parameters.

This gives in total again 1,485 constants after (4.17), which can eventually be reduced by the exploitation of symmetry properties, as we will show in the sequel.

In the general (anisotropic) case, the elastic energy (3.47) acts as a potential for the stresses with (3.27)

$$k_2(E^{(3)} K , K) = E^{(4)} \approx E^{(3)} + E^{(6)} + E^{(6)} : K$$

$$k_3(E^{(3)} K , K) = E^{(5)} \approx E^{(5)} + E^{(6)} + E^{(6)} : K + E^{(6)} : K$$

(3.48) $$+ 3 [E^{(6)} + E^{(6)} : K + E^{(6)} : K] \approx E^{(3)}$$

linearized

$$\approx E^{(5)} + E^{(6)} + E^{(6)} : K + E^{(6)} : K$$
\[k_d (E^G, K, \mathbf{K}) = E^G \cdot (6) + K \cdot (3) \cdot (7) + \mathbf{E}_{34} \cdot (8) + \mathbf{E}_{44} \cdot (4) \cdot \mathbf{K}. \]

These laws are straightforward extensions of the ST.-VENANT-KIRCHHOFF law to gradient elasticity. They are physically linear, but geometrically nonlinear, and they fulfill the EUCLIDEan invariance requirement. Note that the linear theory depends on the choice of the stress and configuration variables, in contrast to the preceding non-linear theory. However, for small deformations, the differences remain negligible.

MINDLIN (1965) gives the form of the elastic energy for the (centro-symmetric) isotropic case which corresponds to our representation of (0.34)

\[(3.49)\]

\[
\rho_0 \omega = a_1 (E^G \cdot I)^2 + a_2 E^G \cdot E^G \\
+ b_1 (K \cdot I) \cdot (K \cdot I) + b_2 I \cdot K \cdot K \cdot I \\
+ b_3 (I \cdot K) \cdot (I \cdot K) + b_4 K \cdot K \cdot K \cdot K + b_5/2 K \cdot K \cdot K \cdot I + b_6 K \cdot K \cdot I \cdot I \\
+ c_1 (I \cdot K) \cdot (I \cdot K) + c_2 (I \cdot K) \cdot (I \cdot K) + c_3 (I \cdot K) \cdot (I \cdot K) \\
+ c_4 (K \cdot K \cdot I) \cdot (K \cdot K \cdot I) + c_5 (K \cdot K \cdot I) \cdot (K \cdot K \cdot I) + c_6 K \cdot K \cdot I \cdot I + c_7 K \cdot K \cdot I \cdot I \\
+ d_1 (E^G \cdot I) \cdot (K \cdot I) + d_2 E^G \cdot K \cdot I + d_3 I \cdot K \cdot K \cdot I\]

\(a_i\) are the LAMÉ constants from HOOKE’s law, \(b_i\) the five scalar elastic constants from the second-order theory (2.74), \(c_i\) seven elastic constants from the third-order theory, and \(d_i\) three constants for the coupling parts.

MINDLIN (1965) also adds a linear part of the form \(c_9 (I \cdot K \cdot I)\) which would lead to constant fourth-order stresses. This is, however, ruled out by our assumption of a stress free reference placement. The only isotropic second-order tensors are spherical ones (multiples of the second-order identity). There are no third-order isotropic tensors, since the LEVI-CIVITA permutation tensor is ruled out by the centro-symmetry. And the only fourth-order isotropic tensor is a multiple of the fourth-order identity. Bilinear forms of odd and even-order tensors cancel out by the centro-symmetry. These findings lead to the energy representation of (3.49).

The differential of the energy is

\[
\rho_0 dw = [2a_1 (E^G \cdot I) \cdot I + 2a_2 E^G + d_1 (K \cdot K \cdot I) \cdot I + d_2 K \cdot I + d_3 I \cdot (K \cdot I)] \cdot dE^G \\
+ [2b_1 (K \cdot I) \cdot I + b_2 I \cdot K \cdot I + b_3 I \cdot K \cdot I + b_4 K \cdot K \cdot I + b_5/2 K \cdot K \cdot I + b_6 K \cdot I \cdot I] \cdot dK \\
+ [2c_1 (I \cdot K \cdot I) \cdot I \cdot I + 2c_2 I \cdot K \cdot I + c_3 I \cdot K \cdot I + c_4 K \cdot I + 2c_4 K \cdot I \cdot I] \cdot dI \\
+ [2c_5 I \cdot K \cdot I + c_6 I \cdot K \cdot I + c_7 I \cdot K \cdot I + 2c_8 K \cdot I \cdot I] \cdot dI \\
+ [2c_9 (I \cdot K \cdot I) \cdot I \cdot I] \cdot dI \\
+ [2a_1 (E^G \cdot I) \cdot I + 2a_2 E^G + d_1 (K \cdot K \cdot I) \cdot I + d_2 K \cdot I + d_3 I \cdot (K \cdot I)] \cdot dE^G \\
+ [2b_1 (K \cdot I) \cdot I + b_2 I \cdot K \cdot I + b_3 I \cdot K \cdot I + b_4 K \cdot K \cdot I + b_5/2 K \cdot K \cdot I + b_6 K \cdot I \cdot I] \cdot dK \\
+ [2c_1 (I \cdot K \cdot I) \cdot I \cdot I + 2c_2 I \cdot K \cdot I + c_3 I \cdot K \cdot I + c_4 K \cdot I + 2c_4 K \cdot I \cdot I] \cdot dI \\
+ [2c_5 I \cdot K \cdot I + c_6 I \cdot K \cdot I + c_7 I \cdot K \cdot I + 2c_8 K \cdot I \cdot I] \cdot dI \\
+ [2c_9 (I \cdot K \cdot I) \cdot I \cdot I] \cdot dI]
\]
\[+ 2c_5 \mathbf{K}^{[12]} \cdot \mathbf{I} \otimes \mathbf{I} + 2c_6 \mathbf{K}^{[4]} \cdot \mathbf{I} \otimes \mathbf{I} + 2c_7 \mathbf{K}^{[12]} \cdot \mathbf{I} \otimes \mathbf{I} \]
\[+ d_1 (\mathbf{E}^G \cdot \mathbf{I}) \mathbf{I} \otimes \mathbf{I} + d_2 \mathbf{E}^G \otimes \mathbf{I} + d_3 \mathbf{I} \otimes \mathbf{E}^G \] :: \(d\mathbf{K}\).

This gives the following stresses after (3.27)

\[S^{(2)} = 2a_1 (\mathbf{E}^G \cdot \mathbf{I}) \mathbf{I} + 2a_2 \mathbf{E}^G + d_1 (\mathbf{I} \cdot \mathbf{K}^{[4]} \cdot \mathbf{I}) \mathbf{I} + d_2 \text{sym}(\mathbf{K} \cdot \mathbf{I}) \mathbf{I} + d_3 \mathbf{I} \cdot \mathbf{K} \]
\[S^{(3)} = \text{sym}^{[23]}(2b_1 (\mathbf{K} \cdot \mathbf{I}) \mathbf{I} \otimes \mathbf{I} + b_2 \mathbf{I} \otimes \mathbf{K} \cdot \mathbf{I} + b_2 \mathbf{I} \cdot \mathbf{K} \otimes \mathbf{I} \mathbf{I} + 2b_3 \mathbf{I} \cdot \mathbf{K} \cdot \mathbf{I}) + 2b_4 \mathbf{K} \cdot \mathbf{I} \]
\[S^{(4)} = \text{sym}^{[23][24]}(2c_1 (\mathbf{K} \cdot \mathbf{I}) \mathbf{I} \otimes \mathbf{I} + 2c_2 \mathbf{I} \otimes \mathbf{K} \cdot \mathbf{I} + c_3 \mathbf{I} \otimes \mathbf{K} \cdot \mathbf{I} \mathbf{I} + c_3 \mathbf{I} \cdot \mathbf{K} \otimes \mathbf{I} + c_4 \mathbf{I} \cdot \mathbf{K} \otimes \mathbf{I} + 2c_5 \mathbf{K} \cdot \mathbf{I} + 2c_6 \mathbf{K} + 2c_7 \mathbf{K} \cdot \mathbf{I} \otimes \mathbf{I} + d_1 (\mathbf{E}^G \cdot \mathbf{I}) \mathbf{I} \otimes \mathbf{I} + d_2 \mathbf{E}^G \otimes \mathbf{I} + d_3 \mathbf{I} \otimes \mathbf{E}^G \mathbf{I} \].
3.2 Finite Third-Order Gradient Elastoplasticity

In what follows we extend the framework of elastoplastic gradient materials of the preceding chapter to third gradients. Again, we consider only unconstrained gradient plasticity, where the higher-order plastic variables are independent of each other.

By elastoplasticity we understand rate-independent materials with elastic ranges. For a gradient theory of elastoplasticity, we consider materials for which both the elastic and the plastic behaviour are assumed to be of gradient type.

One assumes that after any deformation process the material is within some elastic range for which an elastic energy and, thus, elastic laws for the stresses exist. And this holds also for any continuation of the deformation process as long as it does not leave the current elastic range. If this happens, the material continuously passes through different elastic ranges, a process which characterizes yielding.

We want to make these concepts more precise.

Definition 3.4. A (hyper)elastic range is a pair \(\{ \mathcal{E}_p, w_p \} \) consisting of

1.) a path-connected submanifold with boundary \(\mathcal{E}_p \subset \mathcal{C}_{\text{conf}} \)
2.) and the elastic energy

\[
\begin{align*}
\omega_p : \mathcal{E}_p & \rightarrow \mathbb{R} \quad \text{(3.50)} \\
(C, \{^3K, ^4K\}) & \mapsto w_p(C, \{^3K, ^4K\})
\end{align*}
\]

such that after any continuation process \(\{C(\tau), \{^3K(\tau), ^4K(\tau)\} \mid \tau \in [t_0, t] \} \), which remains entirely in \(\mathcal{E}_p \)

the stresses are determined after (3.27) by the final values of the process as

\[
\begin{align*}
\{^2S(t) & = 2\rho_0 \partial w_p(C, \{^3K, ^4K\})/\partial C := k_{p2}(C, \{^3K, ^4K\}) \quad \text{(3.51)} \\
\{^3S(t) & = \rho_0 [\partial w_p(C, \{^3K, ^4K\})/\partial ^3K + 3 \partial w_p(C, \{^3K, ^4K\})/\partial ^4K \cdots ^3K]^{13}] \\
& := k_{p3}(C, \{^3K, ^4K\}) \\
\{^4S(t) & = \rho_0 \partial w_p(C, \{^3K, ^4K\})/\partial ^4K := k_{p4}(C, \{^3K, ^4K\})
\end{align*}
\]

The elastic laws are physically determined only for configurations within the specific elastic range \(\mathcal{E}_p \). However, in the sequel we will extend them to the entire space \(\mathcal{C}_{\text{conf}} \) for simplicity.

In contrast to many other authors, we introduce the elastic ranges in the configuration space. By the elastic laws (3.51) one can easily transform them into the space of stresses and hyper-stresses if this is preferred.
Assumption 3.1. At each instant the elastoplastic material point is associated with an elastic range so that the stresses are given by (3.51).

Isomorphy of the Elastic Ranges

During yielding two effects have to be considered. Firstly, the elastic range E_p as a subset of conf evolves reflecting the hardening or softening behaviour of the material. And secondly, the elastic energy function associated with these elastic ranges can also evolve. We will first address this second effect.

For many materials it is a microphysically and experimentally well-substantiated fact that during yielding the elastic behaviour hardly alters even under large deformations. This substantiates the assumption that the elastic behaviour remains identical. Such an assumption reduces the effort for the identification tremendously, since otherwise one would have to identify the elastic constants at each step of the deformation anew.

We now give this assumption a precise form.

 Assumption 3.2. The elastic laws of all elastic ranges are isomorphic.

Note that in Assumption 3.2 nothing is said about the form or size of the elastic ranges E_p in the configuration space. So the hardening behaviour is not at all restricted by it.

As a consequence, if $\{E_1, w_1\}$ and $\{E_2, w_2\}$ are two elastic ranges, then according to Theorem 3.1 there exist three tensors $(P_{12}, P_{12} \circ \mathbf{K}, P_{12}) \in \text{InvComb}$ and a scalar w_c such that

- for the mass densities in the reference placements ρ_{01} and ρ_{02} holds
 \begin{equation}
 \rho_{01} = \rho_{02} \det P_{12}
 \end{equation}

- and for the elastic energies we have the isomorphy condition after (3.32)
 \begin{equation}
 w_2(C, \mathbf{K}, \mathbf{K}) = w_1(P_{12}^T * C, P_{12}^T \circ \mathbf{K}, P_{12}) + 3 \text{sym} [(P_{12} \circ \mathbf{K} \cdot P_{12})] + w_c.
 \end{equation}

Because of the extension of the elastic energies from E_i to conf, the above equation is assumed to hold for all $(C, \mathbf{K}, \mathbf{K}) \in \text{conf}$. The elastic stress laws are after (3.34) and (3.35)

$$\begin{align*}
 S^{(2)} &= k_{22}(C, \mathbf{K}, \mathbf{K}) = \det^{-1}(P_{12}) [P_{12} \ast k_{21}(C, \mathbf{K}, \mathbf{K})] \\
 S^{(3)} &= k_{32}(C, \mathbf{K}, \mathbf{K}) = \det^{-1}(P_{12}) [P_{12} \circ k_{31}(C, \mathbf{K}, \mathbf{K})]
\end{align*}$$

\[\text{see BERTRAM (1998)}\]
\[S = k_{42}(C, K, K) = \det^{-1}(P_{12} \circ k_{41}(C, K, K)) \]

with

\[C := P_{12}^T \ast C \]
\[(K) := P_{12}^T \circ K + P_{12} \]
\[(K) := P_{12}^T \circ K + P_{12} + 3 \text{ sym } [(P_{12}^T \circ K) \cdot P_{12}] \]

for all \((C, (K)) \in \text{Conf} \). As we have chosen a joint reference placement for all elastic laws of one particular material point (this is, however, not compulsory), we already have \(\rho_{01} = \rho_{02} \), and therefore \(P_{12} \) must be proper unimodular, so that the first isomorphy condition (3.30) or (3.52) is always fulfilled.

If all elastic energies belonging to different elastic ranges are mutually isomorphic, then because of the group property of isomorphy transformations, they all are isomorphic to some freely chosen elastic reference energy \(w_0 \) of one of the elastic ranges of this material. While the current elastic energy function \(w_p\) varies with time during yielding, the reference energy function can always be chosen as constant in time. We thus have the isomorphy condition in the following form.

Theorem 3.2. Let \(w_0\) be the elastic reference energy for an elasto-plastic material. Then for each elastic range \(\{\bar{\varepsilon}_p, w_p\} \) there are three tensors \((P, (P), (P)) \in \text{UnimComb} \) and a scalar \(w_c\) such that

\[w_p(C, (K), (K)) = w_0(P^T \ast C, P^T \circ (K) + (P), P^T \circ (K) + (P) + 3 \text{ sym } [(P^T \circ (K) \cdot (K)) + w_c) \]

for all \((C, (K), (K)) \in \text{Conf} \).

In the present theory, the three variables \((P, (P), (P)) \in \text{UnimComb} \) are chosen as the plastic internal variables. They are not introduced as deformations and therefore do not have to fulfill any integrability conditions, but rather as a transformation of the current elastic energy (not of a placement) to a time-independent reference energy function, which results in a natural way from the isomorphy condition. We again avoid the introduction of an intermediate configuration or a split of some deformation into elastic and plastic parts since it is misleading in a finite deformation theory\(^{47}\).

We now do some renaming of the kinematical variables in \(w_0\)

\[C_e := P^T \ast C \]

\(^{47}\) see the comments in BERTRAM (2005) on p. 291.
\(\mathcal{K}_e := \mathbf{P}^T \circ \mathcal{K} + \mathcal{P} \)
\(\mathcal{K}_e := \mathbf{P}^T \circ \mathcal{K} + \mathcal{P} + 3\text{sym}[(\mathbf{P}^T \circ \mathcal{K}) \cdot \mathcal{P}] \)

or inversely

\[C = \mathbf{P}^{-T} \ast C_e \]

\[\mathcal{K} = \mathbf{P}^{-T} \circ (\mathcal{K}_e - \mathcal{P}) \]

\[\mathcal{K} = \mathbf{P}^{-T} \circ \{\mathcal{K}_e - \mathcal{P} - 3\text{sym}[(\mathbf{P}^T \circ \mathcal{K}) \cdot \mathcal{P}]\} \]

\[= \mathbf{P}^{-T} \circ \{\mathcal{K}_e - \mathcal{P} - 3\text{sym}[(\mathcal{K}_e - \mathcal{P}) \cdot \mathcal{P}]\} . \]

Again, these transformations constitute a differentiable bijection on \(\mathcal{C}_{\text{ref}} \).

The elastic laws are then given after (3.36) by

\[(3.59) \]

\[\mathcal{S}^{(2)} = k_{p2}(C, \mathcal{K}, \mathcal{K}) = \mathbf{P} \ast [2\rho_0 \partial w_0(C_e, \mathcal{K}_e, \mathcal{K}_e)/C_e] \]

\[\mathcal{S}^{(3)} = k_{p3}(C, \mathcal{K}, \mathcal{K}) \]

\[= \mathbf{P} \ast \{\rho_0 [\partial w_0(C_e, \mathcal{K}_e, \mathcal{K}_e)/\partial \mathcal{K}_e + 3 \partial w_0(C_e, \mathcal{K}_e, \mathcal{K}_e)/\partial \mathcal{K}_e \ast \mathcal{K}_e^{[13]}]\} \]

\[\mathcal{S}^{(4)} = k_{p4}(C, \mathcal{K}, \mathcal{K}) = \mathbf{P} \ast [\rho_0 \partial w_0(C_e, \mathcal{K}_e, \mathcal{K}_e)/\partial \mathcal{K}_e] . \]
Decomposition of the Stress Power

We will next consider the stress power once again and specify it for our elastoplastic material.

We obtain for the rates after (2.108), (2.109) and (3.58)

\[
(C^* = P^{-T} \ast [C_e^* - 2\, \text{sym}(C_e \cdot P^{-l} \cdot P^*)])
\]

\[
(3.60 \quad \quad (3.61)
\]

\[
(3.62)
\]

and if \(K_{ijkl} \) are the components of the tetradic in \{ \} brackets

\[
\begin{align*}
K^* &= P^{-T} \circ \{ (K_e^* - P^*) + P^{-l} \cdot P^* \cdot (K_e - P) - 2 \text{sym}[(K_e - P) \cdot P^{-l} \cdot P^*] \\
\end{align*}
\]

We substitute the potentials (3.59) and the rates (3.60-62) into the specific stress power (3.11)

\[
(3.63 \quad \quad \nu_l = 1/\rho \{ \frac{1}{2} \text{sym}(C^* \cdot S) \cdot C^* + \frac{1}{2} \text{sym}(K^* \cdot S) \cdot K^* + \frac{1}{2} \text{sym}[(K^* - 3 \text{sym}(K^* \cdot K)])
\]

\[
 \begin{align*}
 &= P * [\partial w_0(C_e, K_e, K_e) / \partial C_e] \ast P^{-T} * [C_e^* - 2 C_e \cdot P^{-l} \cdot P^*] \\
 &+ P \circ [\partial w_0(C_e, K_e, K_e) / \partial K_e + 3 \partial w_0(C_e, K_e, K_e) / \partial K_e \cdot K_e^{[13]}] \\
 &\ast P^{-T} \circ \{ (K_e^* - P^*) + P^{-l} \cdot P^* \cdot (K_e - P) - 2(K_e - P) \cdot P^{-l} \cdot P^* \}
\end{align*}
\]
\[- \mathbf{P} \circ \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e) / \partial \mathbf{K}_e \]

\[:: 3 [\mathbf{P}^T \circ \{ \mathbf{K}_e \cdot - \mathbf{P}^* + \mathbf{P}^{-1} \cdot \mathbf{P}^* \cdot (\mathbf{K}_e - \mathbf{P}) - 2 (\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P}^{-1} \cdot \mathbf{P}^* \} \cdot \mathbf{P}^T \circ (\mathbf{K}_e - \mathbf{P})] \]

\[+ \mathbf{P} \circ \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e) / \partial \mathbf{K}_e \]

\[:: \mathbf{P}^{-T} \circ \{ \mathbf{K}_e \cdot - \mathbf{P}^* - 3(\mathbf{K}_e \cdot - \mathbf{P}) \cdot \mathbf{P} - 3(\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P}^* \}

\[+ \mathbf{P}^{-1} \cdot \mathbf{P}^* \cdot \{ \mathbf{K}_e \cdot - \mathbf{P} - 3(\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P} \} \]

\[- 3 (\mathbf{K}_e - \mathbf{P} - 3(\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P}) \cdot \mathbf{P}^{-1} \cdot \mathbf{P}^* \}

\[= \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e)^* \cdot \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e) / \partial \mathbf{C}_e \cdot (2 \mathbf{C}_e \cdot \mathbf{P}^{-1} \cdot \mathbf{P}^*) \]

\[+ \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e) / \partial \mathbf{K}_e :: \{ - \mathbf{P}^* + \mathbf{P}^{-1} \cdot \mathbf{P}^* \cdot (\mathbf{K}_e - \mathbf{P}) - 2(\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P}^{-1} \cdot \mathbf{P}^* \} \]

\[+ [3 \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e) / \partial \mathbf{K}_e \cdot \mathbf{K}_e] [3] \]

\[:: \{ - \mathbf{P}^* + \mathbf{P}^{-1} \cdot \mathbf{P}^* \cdot (\mathbf{K}_e - \mathbf{P}) - 2(\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P}^{-1} \cdot \mathbf{P}^* \} \]

\[+ [3 \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e) / \partial \mathbf{K}_e \cdot \mathbf{K}_e] :: \mathbf{K}_e \cdot \mathbf{K}_e \]

\[- \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e) / \partial \mathbf{K}_e :: 3[\mathbf{K}_e \cdot (\mathbf{K}_e - \mathbf{P})] \]

\[- \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e) / \partial \mathbf{K}_e \]

\[:: 3[\{ - \mathbf{P}^* + \mathbf{P}^{-1} \cdot \mathbf{P}^* \cdot (\mathbf{K}_e - \mathbf{P}) - 2(\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P}^{-1} \cdot \mathbf{P}^* \} \cdot (\mathbf{K}_e - \mathbf{P})] \]

\[+ \partial w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e) / \partial \mathbf{K}_e \]

\[:: \{ - \mathbf{P}^* - 3(\mathbf{K}_e \cdot - \mathbf{P}^*) \cdot \mathbf{P} - 3(\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P}^* \}

\[+ \mathbf{P}^{-1} \cdot \mathbf{P}^* \cdot \{ \mathbf{K}_e \cdot - \mathbf{P} - 3(\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P} \} \]

\[- 3 (\mathbf{K}_e - \mathbf{P} - 3(\mathbf{K}_e - \mathbf{P}) \cdot \mathbf{P}) \cdot \mathbf{P}^{-1} \cdot \mathbf{P}^* \}

by (3.59) \[= w_0(\mathbf{C}_e, \mathbf{K}_e, \mathbf{K}_e)^* \]

\[- (\mathbf{P}^{-1} \ast (\mathbf{S} / 2 \rho_0)) \cdot (2 \mathbf{C}_e \cdot \mathbf{P}^{-1} \cdot \mathbf{P}^*) \]
with three stress-like tensors

\[
G^{(2)} = C_e \cdot (P^{-1} \circ S / \rho_0)
\]

\[
- (P^{-1} \circ \rho_0) \cdot (K_e - \mathcal{P}) + 2(P^{-1} \circ S [^{13}]/\rho_0) \cdot (K_e - \mathcal{P})
\]

\[
G^{(3)} = P^{-1} \circ S / \rho_0 - 3(P^{-1} \circ S / \rho_0) \cdot K_e + 3(P^{-1} \circ S [^{13}]/\rho_0) \cdot K_e - \mathcal{P}
\]

\[
G^{(4)} = P^{-1} \circ S / \rho_0.
\]

According to this, the stress power goes into a change of the elastic reference energy and a dissipative part that is only active during yielding and works on the rates \(P^\star \), \(\mathcal{P}^\star \), and \(\mathcal{P}^\star \), for which we will need flow rules.
Yield Criteria

Let us first consider one particular elastic range \(\{\varepsilon_p, \varepsilon_p^o\} \). We decompose the set \(\varepsilon_p \) topologically into its interior \(\varepsilon_p^o \) and its boundary \(\partial \varepsilon_p \). The latter is called yield surface (in the configuration space). In order to describe it more easily, we introduce a real-valued tensor-function in the configuration space

\[
\Phi_p : \text{Conf} \rightarrow \mathbb{R} \mid (C, \mathcal{K}, \mathcal{K}) \mapsto \Phi_p(C, \mathcal{K}, \mathcal{K})
\]

the kernel of which coincides with the yield limit

\[
(3.65) \quad \Phi_p(C, \mathcal{K}, \mathcal{K}) = 0 \iff (C, \mathcal{K}, \mathcal{K}) \in \partial \varepsilon_p.
\]

For distinguishing points in the interior and in the exterior of the elastic ranges, we postulate

\[
(3.66) \quad \Phi_p(C, \mathcal{K}, \mathcal{K}) < 0 \iff (C, \mathcal{K}, \mathcal{K}) \in \varepsilon_p^o
\]

and, consequently,

\[
(3.67) \quad \Phi_p(C, \mathcal{K}, \mathcal{K}) > 0 \iff (C, \mathcal{K}, \mathcal{K}) \in \text{Conf} \setminus \varepsilon_p.
\]

We call such an indicator function or level set function a yield criterion, and assume further on for simplicity that \(\Phi_p \) is differentiable, although there are also suggestions with corners and edges. One can always transform the yield criterion from the configuration space into the stress space by using the elastic laws (3.59).

Instants of yielding are characterized by two facts.

- The configuration is currently on the yield limit and, thus, fulfils its yield condition

\[
(3.68) \quad \Phi_p(C, \mathcal{K}, \mathcal{K}) = 0.
\]

- It is about to leave the current elastic range. This is expressed by the loading condition

\[
(3.69) \quad \Phi^*_p = \frac{\partial \Phi_p}{\partial C} : C^* + \frac{\partial \Phi_p}{\partial \mathcal{K}} : \mathcal{K}^* + \frac{\partial \Phi_p}{\partial \mathcal{K}} : \mathcal{K}^* > 0.
\]

Such a yield criterion is associated with some particular elastic range. In order to obtain a general yield criterion that holds for all elastic ranges in the same form, we introduce additional internal variables \(Z_p \) (here denoted as a dyadic) called hardening variables (although they could also describe softening). These can be tensors of arbitrary order or even a vector of such tensors and, thus, form elements of some finite dimensional linear space, the specification of which depends on the particular hardening model.

The general form of the yield criterion is assumed to be like

\[
(3.70) \quad \varphi(P, \mathcal{P}, \mathcal{P}, C, \mathcal{K}, \mathcal{K}, Z_p)
\]

such that
$$\Phi_p(C, \mathbf{K}, \mathbf{K}) = \varphi(P, P, P, C, \mathbf{K}, \mathbf{K}, Z_p)$$

holds for each particular elastic range.

With this extension we obtain for the yield condition (3.68)

$$\varphi(P, P, P, C, \mathbf{K}, \mathbf{K}, Z_p) = 0$$

and for the loading condition (3.69)

$$\frac{\partial \varphi}{\partial C} \cdot C^* + \frac{\partial \varphi}{\partial \mathbf{K}} \cdot \mathbf{K}^* + \frac{\partial \varphi}{\partial \mathbf{K}} \cdot \mathbf{K}^* > 0$$

where the plastic variables are kept constant.
Flow and Hardening Rules

For the evolution of the internal plastic variables P, P^3, P^4, Z_p evolution equations are needed, namely three flow rules

(3.74)

and a hardening rule

$$Z_p^* = h(P, P^3, P^4, C, K, K, C^*, K^*, K^*$$

(3.75)

all assumed to be in the form of rate-independent ODEs as customary in plasticity. This can be assured in the usual way by the introduction of a plastic consistency parameter $\lambda \geq 0$ in the ansatz

$$P^* = \lambda f_2^0(P, P^3, P^4, C, K, K, Z_p, C^*, K^*, K^*)$$

(3.76)

$$P^3* = \lambda f_3^0(P, P^3, P^4, C, K, K, Z_p, C^*, K^*, K^*)$$

$$P^4* = \lambda f_4^0(P, P^3, P^4, C, K, K, Z_p, C^*, K^*, K^*)$$

$$Z_p^* = \lambda h^0(P, P^3, P^4, C, K, K, Z_p, C^*, K^*, K^*)$$

where we normed the increments of the kinematical variables

$$C^0 := C^*/\mu$$

$$K^0 := K^*/\mu$$

$$K^0 := K^*/\mu$$

by a factor

$$\mu := \sqrt{|C^*|^2 + L_1 |K^0|^2 + L_2 |K^0|^2}$$

(3.78)

which is (only) positive during yielding. The positive constants L_1 and L_2 are necessary for dimensional reasons and control the ratio of yielding due to C^0, K^0, and K^0. We have introduced four functions f_2^0 and h^0, which give the directions of the flow and hardening, while the amount is finally determined by the consistency parameter λ. This consistency parameter is zero during elastic processes. During yielding it can be calculated by the yield condition (3.72) in a rate form using (3.76)
\[
\begin{align*}
\lambda &= \frac{\partial \varphi / \partial P \cdot \lambda \, f_2^o(P, P*, C, K, K, Z_p, C^o, K^o, K^o)}{[\partial \varphi / \partial P \cdot \lambda \, f_2^o(P, P*, C, K, K, Z_p, C^o, K^o, K^o) + \partial \varphi / \partial P \cdot \lambda \, f_3^o(P, P, C, K, K, Z_p, C^o, K^o, K^o) + \partial \varphi / \partial Z_p \cdot \lambda \, h^o(P, P, C, K, K, Z_p, C^o, K^o, K^o)]} \\
&= \frac{\partial \varphi / \partial P \cdot \lambda \, f_2^o(P, P*, C, K, K, Z_p, C^o, K^o, K^o)}{[\partial \varphi / \partial P \cdot \lambda \, f_2^o(P, P*, C, K, K, Z_p, C^o, K^o, K^o) + \partial \varphi / \partial P \cdot \lambda \, f_3^o(P, P, C, K, K, Z_p, C^o, K^o, K^o) + \partial \varphi / \partial Z_p \cdot \lambda \, h^o(P, P, C, K, K, Z_p, C^o, K^o, K^o)]}.
\end{align*}
\]

Both, numerator and denominator of this ratio are always negative during yielding as a consequence of the loading condition (3.73), and, thus, \(\lambda \) is positive in the case of yielding.

If we substitute this value of \(\lambda \) into (3.76), we obtain the consistent flow and hardening rules. In all cases (elastic and plastic), the KUHN-TUCKER condition

(3.81) \(\lambda \, \varphi = 0 \) with \(\lambda \geq 0 \) and \(\varphi \leq 0 \)

holds since at any time one of the two factors is zero.
3.3 Finite Third-Order Gradient Thermoelasticity

This chapter extends the thermodynamics of gradient elastoplasticity of the preceding chapter to third-order gradient materials. Herein we follow

We will show that such materials can exist in a thermodynamical consistent form, and the second law gives the thermoelastic potentials and reasonable restrictions upon the yield and hardening rules in the case of plasticity.

With respect to the mechanical properties we tried to find a format that is as wide as possible to cover essentially all kinds of gradient elasticity and unconstrained plasticity, isotropic or anisotropic. With respect to the thermodynamics, however, we follow the traditional lines of FOURIER and CLAUSIUS and DUHEM.

The step from a purely mechanical theory in the preceding section to thermodynamics follows the lines of BERTRAM/ KRAWIETZ (2012) for classical thermoplasticity, BERTRAM/ FOREST (2014) for the geometrically linear gradient plasticity, and BERTRAM (2016) for finite second-gradient elastoplasticity.

This thermomechanical part of a gradient theory is organized as follows. After introducing the complete set of thermodynamical variables, we are able to define a general thermoelastic material of third gradient type. This can be brought into a reduced form, thus allowing for the Principle of Invariance under Rigid Body Modifications. The CLAUSIUS-DUHEM inequality renders the potential relations for the stresses and the hyperstresses. After working out the transformations of the constitutive equations under a change of the reference placement, we are able to define the symmetry transformations for such material models.

The independent material variables of this theory are given by the thermo-kinematical processes of a material point which we denote as

\[\{ \chi(\tau), \text{Grad} \chi(\tau), \text{Grad Grad} \chi(\tau), \text{Grad Grad Grad} \chi(\tau), \theta(\tau), \text{grad} \theta(\tau) \}_{t=0} \]

where the time-variable \(\tau \) runs over a finite closed time-interval \([0, t]\). All these variables are evaluated at this material point.

One might be tempted to also include higher temperature gradients into the set of independent variables. However, it has been shown by PERZYNA (1971) that this would contradict the CLAUSIUS-DUHEM inequality. Therefore we suppress them right from the beginning.

In the general case of inelastic gradient materials it is assumed that such a process out of a particular initial state determines (by means of a process functional) the caloro-dynamic state at its end consisting of the (hyper)stresses, the heat flux, the internal energy, and the entropy

\[\{ \mathcal{T}(t), \mathcal{T}(t), \mathcal{T}(t), \mathcal{q}(t), \epsilon(t), \eta(t) \} \].
Elasticity means that the current thermo-kinematical state already determines the current caloro-dynamic state, without any memory of the past process.

Definition 3.5. A **thermoelastic third-order gradient material** is given by thermoelastic laws

\[
\begin{align*}
\mathbf{T}^{(2)} &= T_{E2}(\chi, \text{Grad } \chi, \text{Grad Grad } \chi, \theta, \text{grad } \theta) \\
\mathbf{T}^{(3)} &= T_{E3}(\chi, \text{Grad } \chi, \text{Grad Grad } \chi, \theta, \text{grad } \theta) \\
\mathbf{T}^{(4)} &= T_{E4}(\chi, \text{Grad } \chi, \text{Grad Grad } \chi, \theta, \text{grad } \theta)
\end{align*}
\]

(3.82)

\[
\begin{align*}
\mathbf{q} &= q_E(\chi, \text{Grad } \chi, \text{Grad Grad } \chi, \theta, \text{grad } \theta) \\
\mathbf{\varepsilon} &= \varepsilon_E(\chi, \text{Grad } \chi, \text{Grad Grad } \chi, \theta, \text{grad } \theta) \\
\eta &= \eta_E(\chi, \text{Grad } \chi, \text{Grad Grad } \chi, \theta, \text{grad } \theta)
\end{align*}
\]

where all variables are taken at the same material point at the same instant of time. The suffix \(E \) stands for elastic.

This format fulfills the **Principle of Equipresence** as it is usually claimed for.

These constitutive equations can be further reduced by means of the **Principle of Invariance under Rigid Body Modifications**\(^{48}\). As one can easily show, a reduced form for this set of constitutive equations is

\[
\begin{align*}
\mathbf{S}^{(2)} &= S_2(C, K, \mathbf{K}, \theta, g_0) \\
\mathbf{S}^{(3)} &= S_3(C, K, \mathbf{K}, \theta, g_0) \\
\mathbf{S}^{(4)} &= S_4(C, K, \mathbf{K}, \theta, g_0)
\end{align*}
\]

(3.83)

\[
\begin{align*}
\mathbf{q}_0 &= q(C, K, \mathbf{K}, \theta, g_0) \\
\mathbf{\varepsilon} &= \varepsilon(C, K, \mathbf{K}, \theta, g_0) \\
\eta &= \eta(C, K, \mathbf{K}, \theta, g_0)
\end{align*}
\]

with \((C, K, \mathbf{K}, \theta, g_0) \in \text{Conf} \times \mathbb{R}^+ \times V^d\), where exclusively material (or LAGRANGEan) variables have been used, which remain invariant under changes of observer and rigid body modifications.

The HELMHOLTZ free energy is after (2.130) also a function of the reduced thermo-kinematical state

\[
\psi(C, K, \mathbf{K}, \theta, g_0) := \varepsilon(C, K, \mathbf{K}, \theta, g_0) - \theta \eta(C, K, \mathbf{K}, \theta, g_0).
\]

\(^{48}\) see BERTRAM/ SVENDSEN (2001), and BERTRAM (2005), therein called PISM
We will next investigate the consequences of the second law of thermodynamics in the form of the CLAUSIUS-DUHEM inequality (2.132) for this class of elastic materials using (3.11)

\[
0 \geq -\pi^e + \psi^e + \theta^e \eta + \frac{1}{\rho_0 \theta} \mathbf{q}_0 \cdot \mathbf{g}_0
\]

\[
= -\frac{1}{\rho_0} \left\{ \frac{1}{2} \mathbf{S} \cdot \mathbf{C} + (\mathbf{S} - 3 \mathbf{S} \cdot \mathbf{K}) \cdot \mathbf{K}^* + \mathbf{S} : \mathbf{K}^* \right\}
\]

\[+ \partial \psi / \partial \mathbf{C} \cdot \mathbf{C} + \partial \psi / \partial \mathbf{K} \cdot \mathbf{K}^* + \partial \psi / \partial \theta \cdot \theta^e + \partial \psi / \partial \mathbf{g}_0 \cdot \mathbf{g}_0^e\]

\[+ \theta^e \eta + \frac{1}{\rho_0 \theta} \mathbf{q}_0 \cdot \mathbf{g}_0\]

(3.85)

\[
= (\partial \psi / \partial \mathbf{C} - \frac{1}{2 \rho_0} \mathbf{S}) \cdot \mathbf{C} + [\partial \psi / \partial \mathbf{K} - \frac{1}{\rho_0} (\mathbf{S} - 3 \mathbf{S} \cdot \mathbf{K})] \cdot \mathbf{K}^*
\]

\[+ (\partial \psi / \partial \mathbf{K} - \frac{1}{\rho_0} \mathbf{S}) \cdot \mathbf{K}^* + (\partial \psi / \partial \theta + \eta) \theta^e + \partial \psi / \partial \mathbf{g}_0 \cdot \mathbf{g}_0^e\]

\[+ \frac{1}{\rho_0 \theta} \mathbf{q}_0 \cdot \mathbf{g}_0\]

This leads by standard arguments to the thermoelastic relations

\[
\partial \psi / \partial \mathbf{g}_0 = \mathbf{0} \quad \text{(independence of the free energy of the temperature gradient)}
\]

\[
\mathbf{S} = 2 \rho_0 \partial \psi / \partial \mathbf{C} \quad \text{(potential for the stresses)}
\]

(3.86)

\[
\mathbf{S} - 3 \mathbf{S} \cdot \mathbf{K} = \partial \psi / \partial \mathbf{K}
\]

\[
\mathbf{S} = \partial \psi / \partial \mathbf{K} \quad \text{(potential for the fourth-order stresses)}
\]

so that

\[
\mathbf{S} = \partial \psi / \partial \mathbf{K} + 3 \partial \psi / \partial \mathbf{K} \cdot \mathbf{K} \quad \text{potentials for the third-order stresses}
\]

\[
\eta = -\partial \psi / \partial \mathbf{g}_0 \quad \text{(potential for the elastic part of the entropy)}
\]

(3.87)

\[
0 \geq \mathbf{q}_0 \cdot \mathbf{g}_0 \quad \text{(heat conduction inequality)}.
\]

Theorem 3.3. The CLAUSIUS-DUHEM inequality (3.85) is fulfilled for a thermoelastic gradient material during every thermo-kinematical process if and only if the following conditions hold.

- The free energy does not depend on the temperature gradient.
- The free energy is a potential for the stresses and the entropy after (3.86).
- The heat conduction inequality (3.87) holds at every instant.
Thus in elasticity, the complete material model is determined if we only know the two functions $\psi(C, \overline{K}, \overline{\kappa}, \theta)$ and $q(C, \overline{K}, \overline{\kappa}, \theta, g_0)$. The mechanical dissipation is here zero, while the thermal dissipation alone must be non-negative.

Material Isomorphy

We will next establish criteria to express the notion that two thermoelastic points consist of the same material. This is already the case if all the constitutive equations of the two points coincide. However, such a definition would be too restrictive, since we know that our variables depend on the choice of the reference placement. So we first have to admit an appropriate change of the reference placements, before we compare the constitutive equations. And since the mass density always influences the constitutive equations, we claim that the density in such reference placements must also be identical.

This leads to the concept of material isomorphy. The basic idea behind this concept is the following. We consider two thermoelastic points as isomorphic if their thermoelastic behaviour shows no measurable difference during arbitrary processes. As measurable quantities we consider the stresses (as a result of the balance of moment of momentum), the heat flux, and the rate of the internal energy (as a result of the energy balance), while the entropy or the free energy are certainly not measurable.

For thermoelastic materials the mechanical dissipation is zero

$$0 = \pi_i - \psi^* - \theta^* \eta = \pi_i - \varepsilon^* + \theta \eta^* = -Q + \theta \eta^*$$

using (2.130) - (2.131). If the heat supply Q and the temperature θ are measurable quantities, then so is the rate of the entropy for thermoelastic materials. So the entropy of two isomorphic thermoelastic materials named X and Y can differ only by a constant, which can not be determined by any measurement, in principle,

$$\eta_Y(C_Y, \overline{K}_Y, \overline{\kappa}_Y, \theta) = \eta_X(C_X, \overline{K}_X, \overline{\kappa}_X, \theta) + \eta_c$$

after an appropriate choice of the reference placements. By integrating this with respect to the temperature, we obtain for the free energy after (3.86.5)

$$\psi_Y(C_Y, \overline{K}_Y, \overline{\kappa}_Y, \theta) = \psi_X(C_X, \overline{K}_X, \overline{\kappa}_X, \theta) - \eta_c \theta + \varepsilon_c$$

with another constant ε_c. The internal energy is then by (2.130)

$$\varepsilon_Y(C_Y, \overline{K}_Y, \overline{\kappa}_Y, \theta) = \psi_Y(C_Y, \overline{K}_Y, \overline{\kappa}_Y, \theta) + \theta \eta_Y(C_Y, \overline{K}_Y, \overline{\kappa}_Y, \theta)$$

$$= \psi_X(C_X, \overline{K}_X, \overline{\kappa}_X, \theta) + \theta \eta_X(C_X, \overline{K}_X, \overline{\kappa}_X, \theta) + \varepsilon_c$$

49 see BERTRAM/ KRAWIETZ (2012)
\[\varepsilon_X(C, K, K, \theta) + \varepsilon_c. \]

In the context of plasticity we will see that these constants play a rather important role.

This leads to the following definition.

Definition 3.6. Two thermoelastic points \(X \) and \(Y \) are called **elastically isomorphic** if we can find reference placements \(\kappa_X \) for \(X \) and \(\kappa_Y \) for \(Y \) such that the following three conditions hold.

- At the two points, the mass densities are equal in \(\kappa_X \) and \(\kappa_Y \)
 \[\rho_0 Y = \rho_0 X. \] (3.92)
- With respect to \(\kappa_X \) and \(\kappa_Y \) the thermoelastic laws are related by
 \[\psi_Y(C, K, K, \theta) = \psi_X(C, K, K, \theta) - \eta_c \theta + \varepsilon_c \] (3.93)
 for all \((C, K, K, \theta) \in \text{Conf} \times \mathbb{R}^+ \) with two real constants \(\eta_c \) and \(\varepsilon_c \), and
- \[q_Y(C, K, K, \theta, g_0) = q_X(C, K, K, \theta, g_0) \] (3.94)
 for all \((C, K, K, \theta, g_0) \in \text{Conf} \times \mathbb{R}^+ \times V^3 \).

As a consequence of (3.86) this leads also to identities of the other constitutive equations

\[S_2 Y(C, K, K, \theta) = S_2 X(C, K, K, \theta) \]
\[S_3 Y(C, K, K, \theta) = S_3 X(C, K, K, \theta) \]
\[S_4 Y(C, K, K, \theta) = S_4 X(C, K, K, \theta) \]
\[\eta Y(C, K, K, \theta) = \eta X(C, K, K, \theta) + \eta_c \]
\[\varepsilon Y(C, K, K, \theta) = \varepsilon X(C, K, K, \theta) + \varepsilon_c \]

for all \((C, K, K, \theta) \in \text{Conf} \times \mathbb{R}^+ \).

If two points are isomorphic in the above sense, one would consider them as consisting of the same **material**. In fact, the isomorphy condition induces an equivalence relation on all thermoelastic gradient materials, the equivalence classes of which constitute the different materials.

By arguments that have already been given for Theorem 3.1 in the mechanical case, one can then show that these conditions are equivalent to the following statement, which is much easier to handle than the one of the above definition.
Theorem 3.4. Two thermoelastic points X and Y with thermoelastic laws ψ_X, q_X and ψ_Y, q_Y with respect to arbitrary reference placements are elastically isomorphic if and only if there exist three tensors $(P, P^\prime, \tilde{P}) \in InvComb$ and two real constants ε_c and η_c such that

$$\rho_0X = \rho_0Y \det P$$

and

$$\psi_Y(C, K, K, \theta) = \psi_X(P^T \ast C, P^T \circ K + \tilde{P}, P^T \circ K + \tilde{P} + 3 \text{ sym}[(P^T \circ K) \cdot \tilde{P}], \theta) - \eta_c \theta + \varepsilon_c$$

(3.96)

and

$$(\det P) q_Y(C, K, K, \theta, g_0) = P \ast q_X(P^T \ast C, P^T \circ K + \tilde{P}, P^T \circ K + \tilde{P} + 3 \text{ sym}[(P^T \circ K) \cdot \tilde{P}], \theta, P^T \ast g_0)$$

hold for all $(C, K, K, \theta, g_0) \in Conf \times \mathcal{R}^+ \times \mathcal{Y}^3$ with ρ_{0X} and ρ_{0Y} being the mass densities in the reference placements of X and Y, respectively.

Thus, the triple $(P, P^\prime, \tilde{P}) \in InvComb$ together with the reals ε_c and η_c determine the isomorphy transformation. If (3.96) hold, then we have after (2.138) - (2.140) also

$$(\det P) S_{2Y}(C, K, K, \theta) = P \ast S_{2X}(P^T \ast C, P^T \circ K + \tilde{P}, P^T \circ K + \tilde{P} + 3 \text{ sym}[(P^T \circ K) \cdot \tilde{P}], \theta)$$

$$det(P) S_{3Y}(C, K, K, \theta) = P \circ S_{3X}(P^T \ast C, P^T \circ K + \tilde{P}, P^T \circ K + \tilde{P} + 3 \text{ sym}[(P^T \circ K) \cdot \tilde{P}], \theta)$$

(3.97)

$$det(P) S_{4Y}(C, K, K, \theta) = \varepsilon_Y(C, K, K, \theta)$$

$$\eta_Y(C, K, K, \theta) = \eta_X(P^T \ast C, P^T \circ K + \tilde{P}, P^T \circ K + \tilde{P} + 3 \text{ sym}[(P^T \circ K) \cdot \tilde{P}], \theta) + \varepsilon_c$$

for all $(C, K, K, \theta) \in Conf \times \mathcal{R}^+$.
Material Symmetry

If we particularize the concept of isomorphy to identical points $X \equiv Y$, it defines automorphy or symmetry. In this case, we use only one reference placement. Therefore, the isomorphism A must be unimodular, and the two constants in the free energy and the entropy can be omitted.

Definition 3.7. For a thermoelastic gradient material with material laws ψ and q, a symmetry transformation is a triple $(A, 3, 4) \in \text{UnimComb}$ such that

\[
\psi(C, 3, 4, \theta) = \psi(A^T \ast C, A^T \circ K + 3, A^T \circ K + 3 + 3 \text{ sym}[(A^T \circ K) \cdot \mathcal{A}], \theta)
\]

and

\[
q(C, 3, 4, \theta, g_0) = A \ast q(A^T \ast C, A^T \circ K + 3, A^T \circ K + 3 + 3 \text{ sym}[(A^T \circ K) \cdot \mathcal{A}], \theta, A^T \ast g_0)
\]

for all $(C, 3, 4, \theta, g_0) \in \text{Conf} \times \mathbb{R}^+ \times \mathcal{V}^3$.

As a consequence of (3.97) this leads to the symmetry transformations of the other constitutive equations

\[
S_2(C, 3, 4, \theta) = A \ast S_2(C, 3, 4, \theta)
\]

\[
S_3(C, 3, 4, \theta) = A \circ S_3(C, 3, 4, \theta)
\]

\[
S_4(C, 3, 4, \theta) = A \circ S_4(C, 3, 4, \theta)
\]

\[
\varepsilon(C, 3, 4, \theta) = \varepsilon(C, 3, 4, \theta)
\]

\[
\eta(C, 3, 4, \theta) = \eta(C, 3, 4, \theta)
\]

with

\[
C := A^T \ast C
\]

\[
3 := A^T \circ K + 3
\]

\[
4 := A^T \circ K + 3 \text{ sym}[(A^T \circ K) \cdot \mathcal{A}]
\]

for all $(C, 3, 4, \theta) \in \text{Conf} \times \mathbb{R}^+$.
The set of all such symmetry transformations \((A, \mathcal{A}, \mathcal{A}) \in \text{UnimComb}\) represents the symmetry group of the material.

This group is used to define classify the material behavior.

If a material contains with all proper symmetry transformations \((Q, \mathcal{O}, \mathcal{O})\) also the corresponding improper ones \((-Q, \mathcal{O}, \mathcal{O})\), it is called centro-symmetric.

If the symmetry group contains the proper orthogonal group \(\text{Orth}^+\) in the first entry with zero in the second and third, \((Q, \mathcal{O}, \mathcal{O})\), then the material is called hemitropic.

If the material is both centro-symmetric and hemitropic then we will call it isotropic. In this case the symmetry group contains the full orthogonal group in its first entry.

These definitions apply not only to gradient thermoelasticity, but also to any inelastic gradient material in an analogous way.

In all of these cases of orthogonal symmetry transformations, we obtain with respect to undistorted states using (3.35)

\[
\psi(C, K, K, \theta) = \psi(A \ast C, A \ast K, A \ast K, \theta)
\]

\[
\varepsilon(C, K, K, \theta) = \varepsilon(A \ast C, A \ast K, A \ast K, \theta)
\]

\[
\eta(C, K, K, \theta) = \eta(A \ast C, A \ast K, A \ast K, \theta)
\]

\[
A \ast S_2(C, K, K, \theta) = S_2(A \ast C, A \ast K, A \ast K, \theta)
\]

\[
A \ast S_3(C, K, K, \theta) = S_3(A \ast C, A \ast K, A \ast K, \theta)
\]

\[
A \ast S_4(C, K, K, \theta) = S_4(A \ast C, A \ast K, A \ast K, \theta)
\]

\[
A \ast q(C, K, K, \theta, g_0) = q(A \ast C, A \ast K, A \ast K, \theta, A \ast g_0)
\]

for all \((C, K, K, \theta, g_0) \in \text{Conf} \times \mathbb{R}^+ \times \mathcal{V}^3\). Thus, for an isotropic material in an undistorted state, the elastic laws are isotropic tensor functions.
3.4 Finite Third-Order Gradient Thermoplasticity

After having provided the thermoelastic theory, we are able to consider plasticity, starting with the concept of thermoelastic ranges. After the assumption that the (measurable) thermoelastic behaviour is not altered by plastic yielding, we can introduce plastic variables in a natural way. The exploitation of the CLAUSIUS-DUHEM inequality leads to necessary and sufficient conditions for thermodynamical consistency. A residual dissipation inequality restricts the flow and hardening rules in connection with the yield condition. Finally, we can derive a rate-equation for the temperature evolution due to elastic and plastic deformations. The entire section is restricted to rate-independent behaviour. And it is a third-order theory, higher-order gradients are not included.

For this class of materials, the concept of elastic ranges plays a fundamental role.

Definition 3.8. A *(thermo)elastic range* is a triple \(\{ \mathcal{E}_p, \psi_p, q_p \} \) consisting of
1. a non-empty and path-connected submanifold with boundary
 \[\mathcal{E}_p \subset \text{Conf} \times \mathbb{R}^+ \times \mathcal{V} \]
of the space of the thermo-kinematical variables,
2. and thermoelastic laws \(\psi_p, q_p \) that give for all thermo-kinematical processes out of some initial state
 \[\{ C(t), K(t), K(t), \theta(t), g_0(t) \} \]
which remain at all times in \(\mathcal{E}_p \), the calorody-namic state by thermoelastic laws

(3.102) \[
\psi(t) = \psi_p(C(t), K(t), K(t), \theta(t))
\]
and, consequently,

(3.103) \[
\begin{align*}
\mathcal{S} &= 2\rho_0 \partial \psi_p(C(t), K(t), K(t), \theta(t)) / \partial C \\
\mathcal{S} &= \partial \psi_p(C(t), K(t), K(t), \theta(t)) / \partial K \\
&+ 3 \partial \psi_p(C(t), K(t), K(t), \theta(t)) / \partial K \cdot K \\
\eta(t) &= -\partial \psi_p(C(t), K(t), K(t), \theta(t)) / \partial \theta \\
\varepsilon(t) &= \psi_p(C(t), K(t), K(t), \theta(t)) - \theta \partial \psi_p(C(t), K(t), K(t), \theta(t)) / \partial \theta.
\end{align*}
\]
The elastic laws are physically determined only for configurations within the specific elastic range E_p. However, in what follows we will extend them to the entire space $Conf \times \mathbb{R}^+ \times \mathbb{V}$ for simplicity in a continuous and continuously differentiable manner.

Two assumptions are needed to specify elastoplastic behaviour.

Assumption 3.3. At the end of each thermo-kinematical process $\{ C(\tau), K(\tau), \theta(\tau), g_0(\tau) \big|_{\tau=0} \}$ of a thermoelastoplastic material point, there exists a thermoelastic range such that

- the terminate value of the process is contained in it
 $$\{ C(t), K(t), \theta(t) \big|_{t}, g_0(t) \} \in E_p$$
- and the caloro-dynamic state is determined by its thermoelastic laws (3.102) and (3.103), the same as for any continuation of this process that remains in E_p at all times.

We again make the assumption that yielding does not alter the elastic behaviour even under large deformations

Assumption 3.4. The thermoelastic laws of all elastic ranges are isomorphic.

Note that this assumption only refers to the thermoelastic laws associated to the elastic range, and not to the set E_p itself. So nothing is said here with respect to changes of the latter due to hardening or softening or the like.

If all elastic laws belonging to different elastic ranges are mutually isomorphic, then they all are isomorphic to some appropriately chosen elastic reference laws q_0, ψ_0. While the current elastic laws q_p and ψ_p vary with time during yielding, these reference laws can always be chosen as constant in time. We express this useful fact in the following theorem using Theorem 3.4.

Theorem 3.5. Let ψ_0 and q_0 be the elastic reference laws for an elasto-plastic gradient material. Then for each elastic range $\{E_p, \psi_p, q_p\}$ there are three tensors $(P, P, \bar{P}) \in \mathbb{H}_{\text{comb}}$ and two real constants ε_c and η_c such that

$$\psi_p(C, K, \theta) = \psi_0(P^T \ast C, P^T \circ \bar{K} + P^T \circ \bar{P} + P + 3 \text{ sym } [(P^T \circ \bar{K}) \cdot \theta], \theta) + \varepsilon_c - \theta \eta_c$$

and

$$q_p(C, K, \theta, g_0) = P \ast q_0(P^T \ast C, P^T \circ \bar{K} + P^T \circ \bar{P} + P + 3 \text{ sym } [(P^T \circ \bar{K}) \cdot \theta], \theta, P^T \ast g_0)$$

hold for all $(C, K, \theta, g_0) \in Conf \times \mathbb{R}^+ \times \mathbb{V}^3$.

In our theory, the three tensors \((\mathbf{P}, \mathbf{P}_3, \mathbf{P}_4) \in \text{UnimComb}\) and the two real constants \(\varepsilon_c\) and \(\eta_c\) play the role of (plastic) internal variables. They do not have the interpretation of (plastic) deformations, but instead of (plastic) transformations.

Note that the additive constants \(\varepsilon_c\) and \(\eta_c\) can not depend on the current thermo-kinematical variables \(C, K, K, \theta,\) and \(g_0\) after the above Assumption 3.4.

We introduce the following abbreviations

\[
\begin{align*}
C_e &:= \mathbf{P}^T \ast C \\
K_e^{(3)} &:= \mathbf{P}^T \circ K^{(3)} + \mathbf{P}^{(3)} \\
\mathbf{K}_e^{(4)} &:= \mathbf{P}^T \circ \mathbf{K} + \mathbf{P} + 3 \text{sym}[\mathbf{P}^T \circ \mathbf{K} \cdot \mathbf{P}] \\
g_e &:= \mathbf{P}^T \cdot g_0 = \mathbf{P}^T \ast g_0.
\end{align*}
\]

The time derivatives of these elastic variables will later be needed.

\[
\begin{align*}
\dot{C}_e &= \mathbf{P}^T \ast C + 2 \text{sym}(C_e \cdot \mathbf{P}^{-1} \cdot \mathbf{P}) \\
\dot{K}_e^{(3)} &= \mathbf{P}^T \circ \dot{K}^{(3)} + \mathbf{P}^{(3)} \cdot \mathbf{P}^{-1} \cdot \mathbf{P} \cdot \mathbf{K}_e^{(3)} = \mathbf{P}^T \circ \mathbf{K} + \mathbf{P} + 3 \text{sym}[\mathbf{P}^T \circ \mathbf{K} \cdot \mathbf{P}] \\
\dot{K}_e^{(4)} &= \mathbf{P}^T \circ \dot{K}^{(4)} + \mathbf{P}^{(4)} + 3 \text{sym}[\mathbf{K}_e^{(4)} \cdot \mathbf{P}] + 2 \text{subsym}[\mathbf{K}_e^{(3)} \cdot \mathbf{P}] + 2 \text{subsym}[\mathbf{K}_e^{(4)} \cdot \mathbf{P}] \\
\dot{g}_e &= \mathbf{P}^T \cdot \dot{g}_0 = \mathbf{P}^T \ast g_0.
\end{align*}
\]

As consequences of (3.86) we obtain the isomorphic forms for all constitutive equations

\[
\begin{align*}
\psi &= \psi_0(C_e, \mathbf{K}_e^{(3)}, \mathbf{K}_e^{(4)}, \theta) + \varepsilon_c - \theta \eta_c \\
\dot{S}^{(2)} &= \mathbf{P} \ast 2 \rho_0 \partial \psi_0(C_e, \mathbf{K}_e^{(3)}, \mathbf{K}_e^{(4)}, \theta) / \partial C_e \\
\dot{S}^{(3)} &= \mathbf{P} \circ \rho_0 \partial \psi_0(C_e, \mathbf{K}_e^{(3)}, \mathbf{K}_e^{(4)}, \theta) / \partial \mathbf{K}_e^{(3)} + 3 \partial \psi_0(C_e, \mathbf{K}_e^{(3)}, \mathbf{K}_e^{(4)}, \theta) / \partial \mathbf{K}_e^{(3)} \mathbf{K}_e^{(4)} \\
\dot{S}^{(4)} &= \mathbf{P} \circ \rho_0 \partial \psi_0(C_e, \mathbf{K}_e^{(3)}, \mathbf{K}_e^{(4)}, \theta) / \partial \mathbf{K}_e^{(4)} \\
\eta &= \eta_0(C_e, \mathbf{K}_e^{(3)}, \mathbf{K}_e^{(4)}, \theta) + \eta_c \\
\mathbf{q}_\theta &= \mathbf{P} \ast \mathbf{q}_\theta(C_e, \mathbf{K}_e^{(3)}, \mathbf{K}_e^{(4)}, \theta, g_e) \\
\varepsilon &= \varepsilon_0(C_e, \mathbf{K}_e^{(3)}, \mathbf{K}_e^{(4)}, \theta) + \varepsilon_c
\end{align*}
\]
with \[\eta_0(C_e, K_e, \theta) := - \partial \psi_0(C_e, K_e, K_e, \theta) / \partial \theta \]

and \[\varepsilon_0(C_e, K_e, \theta) := \psi_0(C_e, K_e, K_e, \theta) - \theta \partial \psi_0(C_e, K_e, K_e, \theta) / \partial \theta. \]

Yielding and Hardening

The boundary \(\partial \mathcal{E}_p \) of some elastic range \(\mathcal{E}_p \) is called **yield limit** or **yield surface** of the thermo-elastic range.

However, there is no material known for which the yield limit depends on the temperature gradient, so that \(\mathcal{E}_p \) is assumed to be trivial in its last component \(\mathcal{V}^3 \). In the sequel we will suppress this last component of \(\mathcal{E}_p \), so that \(\mathcal{E}_p \) is considered as a subset of only \(\text{Conf} \times \mathbb{R}^+ \).

In order to practically describe such subsets we introduce the yield criterion as an indicator function. More precisely, a **yield criterion** associated with some thermoelastic range is a mapping

\[\Phi_p : \text{Conf} \times \mathbb{R}^+ \to \mathbb{R} \mid \{ C, K, K, \theta \} \mapsto \Phi_p(C, K, K, \theta) \]

the kernel of which forms the yield surface \(\partial \mathcal{E}_p \)

\[\Phi_p(C, K, K, \theta) = 0 \Leftrightarrow (C, K, K, \theta) \in \partial \mathcal{E}_p. \]

We refer to the equation (3.108) as the **yield condition**. For the distinction of states in the interior \(\mathcal{E}_p^o \) and beyond the thermo-elastic range, we demand

\[\Phi_p(C, K, K, \theta) < 0 \Leftrightarrow (C, K, K, \theta) \in \mathcal{E}_p^o. \]

The **loading condition** is

\[\Phi_p(C, K, K, \theta)^* = \partial \Phi_p/\partial \mathcal{C} \cdot C^* + \partial \Phi_p/\partial K :: K^* + \partial \Phi_p/\partial K :: K^* + \partial \Phi_p/\theta \theta^* > 0. \]

Note that we defined the elastic ranges in the space of the independent variables, so that the yield criterion is expressed in terms of thermo-kinematical variables. If one prefers a description in the stress space, one can easily use the elastic laws (3.107) to transform them into the space of the caloro-dynamic variables.

Such a yield criterion is associated with a particular elastic range. A yield criterion can be found for every elastic range, but it is by no means unique. The differentiability may not be given for singular points like vertices of the yield surface. However, we will only refer to smooth yield surfaces in the rest of the text, for simplicity.
Up to now we only considered a yield criterion for one specific elastic range. We will next try to generalize this concept to all the other potential elastic ranges of the same material point. For the general yield criterion of all elastic ranges we use the ansatz \(\varphi(C, K, K, \theta, P, P, P, Z_p) \) with hardening variables \(Z_p \) assumed to be differentiable in all arguments so that

\[
\Phi_p(C, K, K, \theta, P, P, P, Z_p) = \varphi(C, K, K, \theta, P, P, P, Z_p)
\]

holds. \(Z_p \) is a tensor of arbitrary order or even a vector of such tensors. For convenience, we notated it as a dyadic. The general form of the yield condition is then

\[
\varphi(C, K, K, \theta, P, P, P, Z_p) = 0
\]

and the loading condition

\[
\partial \varphi / \partial C : C^* + \partial \varphi / \partial K : K^* + \partial \varphi / \theta \theta^* > 0
\]

which is not the complete time-derivative of \(\varphi \).

For the rate-independent flow and hardening rules we make the following ansatz

\[
P^* = \lambda P_\lambda(C, K, K, \theta, P, P, P, Z_p, C^*, K^*, K^*, \theta^*)
\]

\[
P^* = \lambda P_\lambda(C, K, K, \theta, P, P, P, Z_p, C^*, K^*, K^*, \theta^*)
\]

\[
P^* = \lambda P_\lambda(C, K, K, \theta, P, P, P, Z_p, C^*, K^*, K^*, \theta^*)
\]

\[
Z_p^* = \lambda h(C, K, K, \theta, P, P, P, Z_p, C^*, K^*, K^*, \theta^*)
\]

with the increments of the thermo-kinematical variables

\[
C^o := C / \mu \quad K^o := K / \mu \quad K^o := K / \mu \quad \theta^o := \theta / \mu
\]

normalized by a positive factor

\[
\mu := \sqrt{(C^*|^2 + L_i^2 |K^*|^2 + L_i^2 |K^*|^2 + |\theta^*|^2 / \theta_i^2)}
\]

with respect to a freely chosen reference temperature \(\theta_0 \), and parameters \(L_i \) of dimension "length". The consistency parameter \(\lambda \) is assumed to have a switcher, which sets its values to zero if not both the yield criterion and the loading condition are simultaneously fulfilled. We introduce the abbreviations for the yield directions and for the hardening direction

\[
P^o := P^*/\lambda = P_\lambda(C, K, K, \theta, P, P, P, Z_p, C^o, K^o, K^o, \theta^o)
\]

\[
P^o := P^*/\lambda = P_\lambda(C, K, K, \theta, P, P, P, Z_p, C^o, K^o, K^o, \theta^o)
\]

\[
P^o := P^*/\lambda = P_\lambda(C, K, K, \theta, P, P, P, Z_p, C^o, K^o, K^o, \theta^o)
\]

\[
\]
As the yield condition must permanently hold during yielding, we obtain the \textit{consistency condition}

\[
0 = \phi_C, K^3, K^4, \theta, P, P^3, P^4, Z_p^0
\]

which allows us to determine the consistency parameter as the quotient

\[
\lambda = (C^3, K^3, \theta, P, P^3, P^4, Z_p^0, C^*, K^*, K^*, \theta^*)
\]

Due to the loading condition (3.112), \(\lambda\) is positive during yielding. If we substitute \(\lambda\) into the rules (3.113), we obtain the \textit{consistent yield and hardening rules} as rate forms for the internal variables. Because of the switcher in \(\lambda\) these are incrementally nonlinear, which is typical for elastoplasticity. However, for cases of yielding, \(\lambda\) is linear in the increments \(C^*, K^*, K^*, \theta^*\), which assures rate-independence. The KUHN-TUCKER condition holds

\[
\lambda \phi = 0 \quad \text{with} \quad \lambda \geq 0 \quad \text{and} \quad \phi \leq 0
\]

since at any time one of the two factors is zero.
Thermodynamic Consistency

The additive constants in the free energy and in the entropy ε_c and η_c must remain constant during elastic processes because of the assumption of isomorphic thermo-elastic ranges, and thus cannot depend on C, K, K, θ, or $g\theta$. They can only depend on those state variables that are constant during elastic processes, and these are P, P, P, and Z_p. Consequently, after (3.107) we obtain

$$
\psi = \psi_0(C_e, K_e, K_e, \theta) + \varepsilon_c(P, P, P, Z_p) - \theta \eta_c(P, P, P, Z_p)
$$

(3.120)

$$
\varepsilon = \varepsilon_0(C_e, K_e, K_e, \theta) + \varepsilon_c(P, P, P, Z_p)
$$

$$
\eta = \eta_0(C_e, K_e, K_e, \theta) + \eta_c(P, P, P, Z_p).
$$

(3.121)

In the literature, an additive split of the free energy into elastic and plastic parts is often assumed\(^{50}\). In the present context this is a consequence of the isomorphy Assumption 3.4. Note that the plastic parts of the internal energy and the entropy cannot depend on the temperature, while the plastic part of the free energy

$$
\psi_c(P, P, P, \theta, Z_p) := \varepsilon_c(P, P, P, Z_p) - \theta \eta_c(P, P, P, Z_p)
$$

is linear in the temperature.

The material time-derivative of the free energy (3.120) is

$$
\frac{d}{dt}\psi = \frac{\partial \psi_0}{\partial C_e} \cdot C + \frac{\partial \psi_0}{\partial K_e} \cdot K_e + \frac{\partial \varepsilon_c}{\partial P} \cdot \eta_c(P, P, P, Z_p) - \theta \frac{\partial \eta_c}{\partial \theta} \cdot \theta
$$

(3.122)

$$
+ (\frac{\partial \varepsilon_c}{\partial P} - \theta \frac{\partial \eta_c}{\partial P}) \cdot P - \theta \frac{\partial \eta_c}{\partial P} \cdot P + (\frac{\partial \varepsilon_c}{\partial P} \cdot \theta \frac{\partial \eta_c}{\partial P} \cdot P)
$$

Without physical effect in the present setting, we assume the symmetry of $\frac{\partial \psi_0}{\partial C_e}$ and the right subsymmetries of $\frac{\partial \psi_0}{\partial K_e}$ and $\frac{\partial \psi_0}{\partial K_e}$. By use of (2.108) and (2.109) and of (3.105), (3.106), we continue

$$
\frac{d}{dt}\psi = (P \cdot \frac{\partial \psi_0}{\partial C_e}) \cdot C + (P \circ \frac{\partial \psi_0}{\partial K_e}) \cdot K + (P \circ \frac{\partial \psi_0}{\partial K_e}) \cdot K
$$

$$
+ \frac{\partial \psi_0}{\partial C_e} \cdot (2 C \cdot P^{-1} \cdot P)
$$

$$
+ \frac{\partial \psi_0}{\partial K_e} \cdot (P \cdot P^{-1} \cdot P \cdot (K_e - P) + 2(K_e - P) \cdot P \cdot P^{-1} \cdot P).
$$

\(^{50}\) see, e.g., EKH et al. (2007)
\[
\begin{align*}
+ \partial \psi_0 / \partial K_e & \equiv \left\{ \begin{array}{l}
P \cdot + 3 \text{ sym}[(K_e - P) \cdot P + (K_e - P) \cdot P^*] \
- P^{-1} \cdot P^* \cdot \{K_e - P - 3 \text{ sym}[(K_e - P) \cdot P]\}
\end{array} \right\} \\
+ 3 (K_e - P - 3 \text{ sym}[(K_e - P) \cdot P]) \cdot P^{-1} \cdot P^* \\
+ (\partial \psi_0 / \partial \theta - \eta_c) \theta^* + (\partial \varepsilon_c / \partial P - \theta \partial \eta_c / \partial P) \cdot P^* + (\partial \varepsilon_c / \partial P - \theta \partial \eta_c / \partial P) \cdot P^* \\
+ (\partial \varepsilon_c / \partial P - \theta \partial \eta_c / \partial P) \cdot \{P^* + (\partial \varepsilon_c / \partial P - \theta \partial \eta_c / \partial P) \cdot \} \cdot \} \cdot \} \cdot \} \cdot \}
\end{align*}
\]

We substitute this and the stress power density (3.11) into the CLAUSIUS-DUHEM inequality (2.132) using (3.104), (3.105), (3.120) and (3.121)

\[
0 \geq - \pi_1 + \psi^* + \theta^* \eta + \frac{1}{\rho_0 \theta} q_0 \cdot g_0
\]

(3.124)

\[
\begin{align*}
= & - \frac{1}{2 \rho_0} \left\{ \begin{array}{l}
\partial \psi_0 / \partial C_e \cdot C^* \\
+ \partial \psi_0 / \partial C_e \cdot \{P^* - P^{-1} \cdot P^* \cdot (K_e - P) + 2(K_e - P) \cdot P^{-1} \cdot P^*\}
\end{array} \right\} \\
+ \partial \psi_0 / \partial C_e \cdot \{P^* + 3 \text{ sym}[(K_e - P) \cdot P + (K_e - P) \cdot P^*] \\
- P^{-1} \cdot P^* \cdot \{K_e - P - 3 \text{ sym}[(K_e - P) \cdot P]\}
\end{align*}
\]

If we exploit this inequality first for cases without yielding \((P^* \equiv 0, \dot{P}^* \equiv 0, \dot{P}^* \equiv 0, \dot{Z}_p^* \equiv 0)\), it leads again to the thermoelastic relations (3.86) in the form

\[
\begin{align*}
\dot{S} & = P \cdot 2 \rho_0 \partial \psi_0 / \partial C_e \\
\dot{S} - 3 \dot{S} \cdot K & = P \circ \rho_0 \partial \psi_0 / \partial K_e
\end{align*}
\]

(3.125)
\[S = P \circ \rho_0 \partial \psi_0 / \partial K_e \]

and consequently

\[S = P \circ \rho_0 \left[\partial \psi_0 / \partial K_e + 3 \psi_0 / \partial K_e \right] \]

\[\eta(C_e, K_e, K_e, \theta) = - \partial \psi_0 / \partial \theta \]

(heat conduction inequality).

Compared with (3.59), we see that the elastic free energy now plays the role of the elastic reference energy \(w_0 \) in the mechanical theory.

In the case of yielding, the above findings must still hold because of continuity. Additionally, we obtain the residual dissipation inequality

\[0 \geq \partial \psi_0 / \partial C_e \cdot (2 C_e \cdot P^{-1} \cdot P^*) \]

\[+ \partial \psi_0 / \partial K_e \cdot (\{ P^* \cdot P^{-1} \cdot P^* \} \cdot (K_e - P) + 2 \{ K_e - P \} \cdot P^{-1} \cdot P^*) \]

\[+ \partial \psi_0 / \partial K_e \cdot \{ \{ P^* \} + 3 \text{sym}[\{ K_e - P \} \cdot P] \} \]

\[- \partial \psi_0 / \partial C_e \cdot (2 C_e \cdot P^{-1} \cdot P^*) \]

\[+ \partial \psi_0 / \partial K_e \cdot \{ \{ K_e - P \} \cdot P \} \cdot (K_e - P) \cdot P^{-1} \cdot P^*) \]

\[+ 3 \{ \{ K_e - P \} \cdot P \} \cdot (K_e - P) \cdot P^{-1} \cdot P^*) \]

\[+ (\partial \epsilon_\circ / \partial P - \theta \partial \eta_\circ / \partial P) \cdot (P^* + (\partial \epsilon_\circ / \partial Z_{p} - \theta \partial \eta_\circ / \partial Z_{p}) \cdot Z_{p} \]

or with a positive plastic consistency parameter \(\lambda \) with (3.116)

\[0 \geq \partial \psi_0 / \partial C_e \cdot (2 C_e \cdot P^{-1} \cdot P^0) \]

\[+ \partial \psi_0 / \partial K_e \cdot (\{ P^0 \cdot P^{-1} \cdot P^0 \} \cdot (K_e - P) + 2 \{ K_e - P \} \cdot P^{-1} \cdot P^0) \]

\[+ \partial \psi_0 / \partial K_e \cdot \{ \{ P^0 \} + 3 \text{sym}[\{ K_e - P \} \cdot P] \} \cdot P^{-1} \cdot P^0 \]

\[- \partial \psi_0 / \partial C_e \cdot (2 C_e \cdot P^{-1} \cdot P^0) \]

\[+ \partial \psi_0 / \partial K_e \cdot \{ \{ K_e - P \} \cdot P \} \cdot (K_e - P) \cdot P^{-1} \cdot P^0 \]

\[+ 3 \{ \{ K_e - P \} \cdot P \} \cdot (K_e - P) \cdot P^{-1} \cdot P^0 \]

\[+ (\partial \epsilon_\circ / \partial P - \theta \partial \eta_\circ / \partial P) \cdot (P^0 + (\partial \epsilon_\circ / \partial Z_{p} - \theta \partial \eta_\circ / \partial Z_{p}) \cdot Z_{p} \)
posing a restriction on the flow rules and the hardening rule (3.119). Note that not each of these terms has to be negative, but only the sum of them. Thus, yield against the stresses is not excluded by the second law51.

We state these findings in the following

Theorem 3.6. The CLAUSIUS-DUHEM inequality (3.124) is fulfilled for a thermoelastoplastic gradient material during every thermo-kinematical process if and only if the free energy does not depend on the temperature gradient, the potentials (3.125) and the heat conduction inequality (3.126) hold, and the residual inequality (3.128) is fulfilled.

The first conditions are familiar from thermo-elasticity. They must hold for the thermo-elastic reference laws, and are then automatically valid for all isomorphic laws, including the current ones.

The specific stress power (3.11) becomes with (3.63) and the potentials (3.125) and (2.108) - (2.109)

\[
\pi_i = \psi_0(C_e, K_e, K_e, \theta) \cdot (P^{-1} \cdot P^\ast) - G \cdot P^\ast - G \cdot P^\ast + \theta^\ast \eta_0(C_e, K_e, K_e, \theta) - 2 \cdot G \cdot (P - P^\ast).
\]

with the plastic dynamical variables after (3.64). Accordingly, the stress power is split into a part that is stored in the reference elastic free energy, and a dissipative part which works on the rates of the plastic transformations P^\ast and P^\ast and P^\ast (being linear in these rates), and is only active during yielding.

Temperature Changes

In order to determine the change of the temperature of the material point under consideration, we use the local form of the first law of thermodynamics with the heat supply Q, which results from irradiation and conduction. We substitute the internal energy (3.120) and the stress power (3.129) into the energy balance (2.131)

\[
Q = \varepsilon_0(C_e, K_e, K_e, \theta) + \varepsilon(P, P, P, Z_p) + \psi_0(C_e, K_e, K_e, \theta) - \theta^\ast \eta_0(C_e, K_e, K_e, \theta) - G \cdot (P^{-1} \cdot P^\ast) - G \cdot P^\ast - G \cdot P^\ast.
\]

By using (3.107.8,9) for the elastic parts we get

51 see the example in BERTRAM/ KRAWIETZ (2012) and BERTRAM/ FOREST (2014).
\[
\eta_0(C_e, K_e, \theta) := -\partial \psi_0(C_e, K_e, K_e, \theta) / \partial \theta
\]

and
\[
\varepsilon_0(C_e, K_e, \theta) := \psi_0(C_e, K_e, K_e, \theta) - \theta \partial \psi_0(C_e, K_e, K_e, \theta) / \partial \theta
\]

\[
Q = \theta \eta_0(C_e, K_e, K_e, \theta)^* + \epsilon_c(P, P, P, P)\}
\]

(3.131)

\[
- \mathbf{G} : \mathbf{P} = \mathbf{G} : \mathbf{P} - \mathbf{G} : \mathbf{P}.
\]

This can be split into a **thermoelastic heat generation**

\[
Q_e := \theta \eta_0(C_e, K_e, K_e, \theta)^*
\]

(3.132)

\[
= -\theta \left(\mathbf{R} : \mathbf{C} + \mathbf{R} : \mathbf{K} + \mathbf{R} : \mathbf{K} \right) + c \theta^*
\]

with the abbreviations for

- the **specific heat**
 \[c(C_e, K_e, K_e, \theta) := \theta \partial \eta_0 / \partial \theta\]

- the **2nd-order stress-temperature tensor**
 \[\mathbf{R}(C_e, K_e, K_e, \theta) := -\partial \eta_0 / \partial C_e\]

- the **3rd-order stress-temperature tensor**
 \[\mathbf{R}(C_e, K_e, K_e, \theta) := -\partial \eta_0 / \partial K_e\]

- the **4th-order stress-temperature tensor**
 \[\mathbf{R}(C_e, K_e, K_e, \theta) := -\partial \eta_0 / \partial K_e\]

and a **plastic heat generation**

\[
Q_p := \epsilon_c(P, P, P, Z_p)^* - \mathbf{G} : \mathbf{P} = \mathbf{G} : \mathbf{P} - \mathbf{G} : \mathbf{P}.
\]

(3.133)

(3.130) can be solved for the temperature change

\[
\theta^* = \frac{1}{c} \left\{ Q + \theta \left(\mathbf{R} : \mathbf{C} + \mathbf{R} : \mathbf{K} + \mathbf{R} : \mathbf{K} \right) - \epsilon_c(P, P, Z_p)^* \right\}
\]

\[
+ \mathbf{G} : \mathbf{P} = \mathbf{G} : \mathbf{P} + \mathbf{G} : \mathbf{P}.
\]

(3.134)

By this equation, we can integrate the temperature along the process and so determine the final temperature after some arbitrary elasto-plastic process. Accordingly, temperature changes are caused by

- the heat supply \(Q \) from the outside
- thermoelastic transformations due to the second and third term in (3.132)
- the heat \(Q_p \) generated by plastic yielding and hardening, which can be determined by use of the flow and hardening rules (3.13).
4. Nth-Order Gradient Materials under Small Deformations

This chapter extends the results from

where only first and second gradients are taken into account, to higher-order continua within the linear theory for small deformations.

In doing so, we generalize the approach of BERTRAM/ KRAWIETZ (2012) to such gradient materials. Within the frame of plasticity, we decompose the deformation tensor and the gradient of the deformation tensor into its elastic and its plastic parts. The theory is based on the usual assumption of identical thermoelastic behaviour in all elastic ranges, which means that all measurable thermoelastic properties are not affected by plastic deformations. This concept has been introduced by BERTRAM (1998, 2005) in the context of large deformations. In the present work, however, we limit ourselves to small deformations for the sake of simplicity and clearness.

PERZYNA (1971) also suggested a constitutive framework for gradient materials of arbitrary order. He chose the method of preparation as a constitutive format, which is different from the present one.

This chapter is organized as follows. We start with providing appropriate notations and variables for such a theory. Then we consider the linear theory of a mechanical gradient elastoplasticity. This format will be extended afterwards to a thermodynamical theory of elastoplasticity. There the consequences of the second law of thermodynamics are worked out.

We start with the kinematics of small deformations. For an Nth-order gradient material the following set of kinematical variables will be included as higher gradients of the displacement field \(u \)

\[
U^{(i)} := \text{grad}^i u = u \otimes \nabla^i = u \otimes \nabla \otimes \ldots \otimes \nabla \quad (i\text{-times})
\]

for \(i = 1, 2, ..., N \), which forms a tensor field of order \(i+1 \). Within the format of small deformations, we do not have to distinguish between the spatial and the material gradients. All these tensors are subsymmetric with respect to all entries except the first, like, e.g., \(U_{ijk} = U_{ijk} \) and \(U_{ijkl} = U_{ikjl} = U_{ijlk} \), etc. For \(i \equiv 1 \) we would have \(U^{(2)} = \text{grad} u = H \), i.e., the displacement gradient from the classical theory. Due to the postulated invariance of the material response under rigid rotations, only the symmetric part of this tensor can enter constitutive laws. This leads by standard arguments to the classical linear strain tensor \(E \), so that we identify \(U^{(2)} \equiv E \) as an exception of the general rule (4.1).

52 Please note that we changed the notation with respect to the previous editions of this Compendium.
Some authors prefer the higher gradients of \(\mathbf{E} \) like \(\nabla \mathbf{E}, \nabla^2 \mathbf{E} \), etc. to the higher displacement gradients from above. However, it has already shown by MINDLIN/ESHEL (1968) that this choice of kinematic variables is immaterial, since there is a bijective relation between the two. These are given by MINDLIN/ESHEL (1968) and translated into our notations as

\[
^{(3)} \mathbf{U} = \nabla \nabla \mathbf{u} = \frac{1}{2} \left(\mathbf{u} \otimes \nabla \otimes \nabla + \nabla \otimes \mathbf{u} \otimes \nabla + \nabla \otimes \nabla \otimes \mathbf{u} \right) - \nabla \otimes \nabla \otimes \mathbf{u} - \nabla \otimes \mathbf{u} \otimes \nabla
\]

or inversely

\[
\nabla \mathbf{E} = \nabla \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^{[12]}) = \frac{1}{2} (\nabla \mathbf{H} + \nabla \mathbf{H}^T)
\]

with transpositions indicated by the upper brackets \([]\). It should be noted, however, that a format based on the \(^{(i)} \mathbf{U}\) gives other hyperstresses, other balance equations, and other boundary conditions as a format based on gradients of \(\mathbf{E} \). This fact has often been misinterpreted\(^{53}\).

In order to facilitate the notation, we introduce the following hyper-vector of tensors

\[(4.2) \quad \mathbf{U} := \{^{(2)} \mathbf{U}, ^{(3)} \mathbf{U}, \ldots, ^{(N+1)} \mathbf{U} \}.
\]

We extend the scalar product on tensor spaces of different order to our hyper-vectors in the following way. For two hyper-vectors \(\mathbf{U} := \{^{(2)} \mathbf{U}, ^{(3)} \mathbf{U}, \ldots, ^{(N+1)} \mathbf{U} \} \) and \(\mathbf{N} := \{^{(2)} \mathbf{N}, ^{(3)} \mathbf{N}, \ldots, ^{(N+1)} \mathbf{N} \} \) the scalar product is defined as

\[(4.3) \quad < \mathbf{U}, \mathbf{N} > := ^{(2)} \mathbf{U} \cdot ^{(2)} \mathbf{N} + ^{(3)} \mathbf{U} \cdot ^{(3)} \mathbf{N} + \ldots + ^{(N+1)} \mathbf{U} \cdot ^{(N+1)} \mathbf{N}
\]

where "..." stands for \(N+1 \) contractions.

A completely symmetric tensor of order \(K \geq 2 \) has \(I + \sum_{j=1}^{K} (j + I) \) independent components, which gives for

- \(K \equiv 2 \) 6 (symmetric dyadics)
- \(K \equiv 3 \) 10 (symmetric triadics)
- \(K \equiv 4 \) 15 (symmetric tetradics)
- \(K \equiv 5 \) 21 (symmetric pentadics).

The tensors \(^{(K)} \mathbf{U}\) with their right subsymmetries have the following number of independent variables for

- \(K \equiv 3 \) 18 triadics with right subsymmetry

\(^{53}\) see, e.g., POLIZZOTTO (2016)
• $K \equiv 4$ 30 tetradics with two right subsymmetries
• $K \equiv 5$ 45 pentadics with three right subsymmetries
• $K \equiv 6$ 63 hexadics with four right subsymmetries
• $K > 2$ $3 \times [I + \sum_{j=1}^{K-1} (j + 1)]$

so that the hyper-vector $\mathbf{U} = \{\mathbf{U}, \ldots, \mathbf{U}^{(N+1)}\}$ has

$$m_N = 6 + 18 + 30 + \ldots + 3 \times [I + \sum_{j=1}^{N} (j + 1)]$$

independent variables, which gives for

- $N \equiv 1$ $m_1 = 6$
- $N \equiv 2$ $m_2 = 24$
- $N \equiv 3$ $m_3 = 54$
- $N \equiv 4$ $m_4 = 99$
- $N \equiv 5$ $m_5 = 162$

Dual to this kinematical set \mathbf{U}, we introduce the power conjugate hyperstresses

$$\mathbf{T} := \{\mathbf{T}^{(2)}, \ldots, \mathbf{T}^{(N+1)}\} = \{\mathbf{T}, \mathbf{T}^{(3)}, \ldots, \mathbf{T}^{(N+1)}\}$$

with the usual (symmetric) CAUCHY stress tensor $\mathbf{T}^{(2)}$ as its first component, such that the stress power density becomes

$$\langle \mathbf{T}, \mathbf{U}^* \rangle = \langle \mathbf{T} \rangle \mathbf{U}^* = \mathbf{T} \cdot \mathbf{U}^*$$

The first term on the right-hand side stands for the classical stress power of simple materials

$$\langle \mathbf{T}, \mathbf{U}^* \rangle = \langle \mathbf{T} \rangle \mathbf{U}^* = \mathbf{T} \cdot \mathbf{U}^*$$

For the hyperstresses $\mathbf{T}^{(i)}$ we assume the same right subsymmetries as the dual displacement gradients \mathbf{U} possess.

At any instant, the mechanical balance laws have to be fulfilled after Theorem 1.21, namely

- the balance of linear momentum

$$\text{div}^{(2)} \mathbf{T} - \text{div}^{(2)} \mathbf{T} + \text{div}^{(4)} \mathbf{T} - \ldots + (-1)^{N+1} \text{div}^{N} \mathbf{T} + \rho \mathbf{b} = \rho \mathbf{u}^*$$

- the balance of angular momentum

$$\mathbf{\mathbf{T}} = \mathbf{\mathbf{T}}^T$$

The latter condition will be satisfied by appropriate constitutive equations.
The boundary conditions for higher gradient materials are less simple. For \(N = 2 \) we have the classical displacement or traction boundary conditions (CAUCHY 1823). For \(N = 3 \) we have displacement or traction boundary conditions after (1.142) and (1.143) (TOUPIN 1962). For \(N = 3 \) we have displacement or traction boundary conditions (1.168) - (1.170) after MINDLIN (1962, eq. 18).

4.1 Linear Nth-Order Gradient Elasticity

The mechanical theory of gradient elasticity is constituted by a linear dependence between \(T \) and \(U \) which we denote as

\[
T = C[U]
\]

with a linear operator \(C \).

This elastic law contains all possible linear combinations between all \(\tilde{U} \) and all \(\tilde{T} \) and is, thus, in general highly coupled.

The material is called hyperelastic, if an elastic energy density \(w(U) \) exists such that

\[
\pi_i = w(U)^* \tag{4.11}
\]

holds for all states of the material point. This leads to the potential relation for the hyperstresses

\[
T = \partial U w(U) \tag{4.12}
\]

In our linear theory, the elastic energy is given as a square form of the strain vector which we denote as

\[
w(U) = \frac{1}{2} C[U, U] \tag{4.13}
\]

again leading to the linear elastic law (4.10) by means of (4.12). Here

\[
C = \partial^2 U w(U) \tag{4.14}
\]

is the elastic operator. One can bring this operator in the following notation. Let \(C^{(i k)} \) be a tensor of order \(i+k \) which defines a bilinear form

\[
\hat{U} \cdot \ldots \cdot \hat{C} \cdot \ldots \cdot \hat{U} \tag{4.15}
\]

with \(i \) contractions on the left and \(k \) on the right-hand side. Then one can organize \(C \) in an \((N+1) \times (N+1)\) quadratic hyper-matrix, the \((i, k)\)-th element of which is such \(C^{(i k)} \). This hyper-matrix has the major symmetry if for all \(i, k = 1, \ldots, N+1 \)

\[
\hat{U} \cdot \ldots \cdot \hat{C} \cdot \ldots \cdot \hat{U} = \hat{C} \cdot \ldots \cdot \hat{C} \cdot \ldots \cdot \hat{U} \tag{4.16}
\]

holds for all tensors \(\hat{U}, \hat{K} \) of order \(i \) and \(k \), respectively.
By standard arguments the symmetry of the elastic operator is a necessary and sufficient integrability condition of the elastic law (4.10) to the energy (4.13).

The number of independent variables of a symmetric C can be calculated after

$$\text{(4.17)} \quad \left(m_N^2 + m_N \right) / 2 .$$

This gives for

- $N \equiv 1 \quad 21$
- $N \equiv 2 \quad 300$
- $N \equiv 3 \quad 1,485$
- $N \equiv 4 \quad 4,950$
- $N \equiv 5 \quad 13,203$

independent elastic constants.

Elastic Symmetry

The number of independent elastic constants can be further reduced by exploiting material symmetries of the elastic behaviour. Since we are dealing here only with solids, we can restrict our considerations to orthogonal symmetry transformations, i.e., to rotations and reflections.

Let $u(x)$ be an arbitrary displacement field of the body. Elasticity is time-independent, so that we do not have to take the time-dependence of the displacements into account here. Further, let Q be some orthogonal tensor. We now create a second displacement field in the body region

$$\text{(4.18)} \quad u(x) := Q \cdot u(x) \quad \text{with} \quad x := Q \cdot x$$

which is simply the result of a rotation of the field $u(x)$ by Q around the origin.

After the chain rule, we obtain for the displacement gradient for the rotated displacement field

$$\text{(4.19)} \quad H = \text{grad} \ u = \partial_x u = \partial_u u \cdot \partial_x x = Q \cdot H \cdot Q^T = Q \ast H .$$

The same rotation applies also to its symmetric part

$$\text{(4.20)} \quad E = Q \ast E$$

and to all higher gradients

$$\text{(4.21)} \quad \bar{U} = Q \ast \bar{U} .$$

This gives rise to the following rotation for hyper-vectors

$$\text{(4.22)} \quad U = Q \ast \bar{U} \iff \bar{U} = Q \ast \bar{U} \quad \text{for all} \quad i = 2, \ldots, N+1 .$$
Note that we achieve \((-Q)*U = Q*U\) for odd \(i\), and \((-Q)*U = -(Q*U)\) for even \(i\). So it does matter whether the orthogonal tensor \(Q\) is proper or improper.

An analogous rotation will now be applied to the corresponding stress fields, namely

\[
(4.23) \quad T = Q \cdot T \cdot Q^T = Q \cdot T
\]

for the second-order stress tensors,

\[
(4.24) \quad \tilde{T} = Q \cdot \tilde{T}
\]

for the \(i\)-th hyperstress tensor, and

\[
(4.25) \quad \hat{T} = Q \cdot \hat{T}
\]

for the hyper-vector of the stresses in a straightforward way.

This leads to the following

Definition. An orthogonal tensor \(Q\) is called a **symmetry transformation** of the linear elastic law (4.10) if

\[
(4.26) \quad Q \cdot (C[U]) = C[Q \cdot U]
\]

holds for all deformations \(U\). The set of all symmetry transformations of \(C\) is called the **symmetry group** \(\mathcal{S}\) of the material.

Obviously, the set \(\mathcal{S}\) fulfils the axioms of a group under composition in an algebraic sense, which justifies the name **symmetry group**.

It is easy to see that the symmetry condition (4.26) is equivalent to the following one

\[
(4.27) \quad Q \cdot C = C
\]

which again implies a rotational invariance of all stiffness components.

We call the elastic law **centro-symmetric**, if \(\mathcal{S}\) contains the negative identity \(-I\). As a consequence of the group axioms, we would then also have

\[
(4.28) \quad Q \in \mathcal{S} \iff -Q \in \mathcal{S}.
\]

This transformation gives

\[
(4.29) \quad (-I) \cdot U = (-I)^{(i')}(U)
\]

i.e., it changes the sign for odd-order tensors, while it is the identity on even-order tensors. This is why the coupling parts \(\tilde{C}^{(i',k)}\) disappear in the centro-symmetric case if \(i + k\) is odd.

One calls the elastic law **isotropic** if the symmetry group contains all orthogonal tensors. One calls the elastic law **hemitropic** if the symmetry group contains all proper orthogonal tensors. So isotropy is hemitropy plus centro-symmetry.
The classical definitions of all the other symmetry classes for solid crystals\footnote{see, \textit{e.g.}, BERTRAM/ GLÜGE (2015)} can now be applied in a strictly analogous way.
4.2 Nth-Order Gradient Elastoplasticity

The mechanical theory of gradient plasticity consists of the following ingredients.

1.) an additive decomposition of all higher gradients

\[U = U_e + U_p \]

which gives rise to a decomposition of the hyper-vector

\[U = U_e + U_p \]

in a straightforward way. For all parts, elastic and plastic ones, we assume the same symmetry properties as we previously did for \(U \) itself.

It depends on the specific approach whether all \(U_p \) are considered as independent of each other (unconstrained gradient plasticity) or, alternatively, as \(U_p = \text{grad} \tilde{U}_p \) in analogy to (4.1) (constrained gradient plasticity). Since the first case seems to be more general, we will consider the unconstrained case in what follows, and only eventually mention the constrained one.

2.) an elastic energy taken as a square form of the elastic strain vector

\[w(U_e) = \frac{1}{2} C[U_e, U_e] \]

leading to the elastic law

\[T = C[U_e] \]

by use of a linear elasticity operator \(C \) reflecting the material symmetry properties (anisotropies) of the elastic behaviour.

The underlying assumption of this law is that the stresses depend only on the elastic variables and are unaffected by plastic deformations.

3.) a yield criterion, which indicates the limit of the current elastic range. The general ansatz for the yield criterion in the strain space is

\[\varphi(U_e, U_p, Z_p) \]

where \(Z_p \) is the vector of additional scalar or tensorial internal variables such as hardening variables. In what follows we will also denote it as a hyper-vector thus leaving enough space to implement different hardening variables and mechanisms. Eventually a scalar-product in the space of the hardening variables is applied. We notate it again in the same way as for the other hyper-vectors. The index \(p \) tells us that this variable can only evolve during yielding.

The yield limit is the kernel of this function

\[\varphi(U_e, U_p, Z_p) = 0 \]

(yield condition), while we assume
\[\varphi(U_e, U_p, Z_p) < 0 \] (only) in the interior of the elastic range.

One can always transform the yield criterion from the strain space into the stress space by using the elastic law (4.33).

Necessary and sufficient conditions for the material to yield are the yield condition (4.35) and the **loading condition**

\[\langle \partial U_e \varphi, \ U^* \rangle > 0 \]

which states a violation of the yield criterion if the total deformation increments would be purely elastic.

This presentation is limited to rate-independent plasticity, but viscoplasticity can be introduced in a straightforward manner into the model.

4.) a **flow rule** which determines the evolution of \(U_p \). A general rate-independent unconstrained ansatz for it would be a first-order ODE depending on practically all variables and the rate of the total deformation

\[U_p^* = U(U_p, U_e, Z_p, U^*) . \]

Since we want to consider an **unconstrained** gradient plasticity, the evolution laws for the different components of the hyper-vector \(U_p \) can be chosen independently of each other.

5.) an evolution equation for the additional variable(s) \(Z_p \) called **hardening rule**, which is assumed to be of the same form as the flow rule above

\[Z_p^* = Z(U_p, U_e, Z_p, U^*) . \]

These constitutive laws establish a complete mechanical rate-independent model for a gradient elasto-plasticity.

We now specify the ansatz for the rate-independent evolution (4.38) and (4.39) for the plastic variables, namely the flow and the hardening rules in the following form

\[U_p^* = \lambda U(U_p, U_e, Z_p) \]

\[Z_p^* = \lambda Z(U_p, U_e, Z_p) \]

with a joint **plastic consistency parameter** \(\lambda \) and two functions \(U \) and \(Z \) of the listed arguments (by an abuse of notation we use the same symbols for the functions as before).

\(\lambda \) is introduced as zero if and only if no yielding occurs, *i.e.*, during elastic events. During yielding, however, \(\lambda \) is positive. In all cases the KUHN-TUCKER condition holds in the form

\[\lambda \varphi = 0 \quad \text{with} \quad \lambda \geq 0 \quad \text{and} \quad \varphi \leq 0 . \]

The plastic parameter can be determined during yielding by the **consistency condition** as a consequence of the yield condition (4.35)

\[0 = \langle \partial U_e \varphi, \ U^* \rangle + \langle \partial U_p \varphi, \lambda U(U_p, U_e, Z_p) \rangle + \langle \partial Z_p \varphi, \lambda Z(U_p, U_e, Z_p) \rangle \]

which can be solved for the plastic parameter
(4.44) \[\lambda = - \langle \partial U_e \varphi , U^* \rangle / \left[\langle \partial u_p \varphi , U(U_p, U_e, Z_p) \rangle + \langle \partial Z_p \varphi , Z(U_p, U_e, Z_p) \rangle \right] \].

Due to the loading condition (4.37), \(\lambda \alpha \) must be positive during plastic events. After (4.42), \(\lambda \) alone is positive, and so \(\alpha \) must also be positive. After (4.44) this is a restriction to the flow rule \(U \), the hardening rule \(Z \), and the yield criterion \(\varphi \).
4.3 Nth-Order Gradient Thermo-Elastoplasticity

We use the energy balance (first law of thermodynamics) in the local form

\[\rho \varepsilon^\text{\textbullet} = \rho Q + \langle T, U^\text{\textbullet} \rangle. \]

with the stress power density \(\langle T, U^\text{\textbullet} \rangle \) after (4.6) and the heat supply per unit mass and time \(Q \), which results from irradiation \(r \) and conduction \(q \) in the usual form

\[Q = r - (\text{div} q)/\rho. \]

By the introduction of the HELMHOLTZ free energy

\[\psi := \varepsilon - \theta \eta \]

we assume as the second law the CLAUSIUS-DUHEM inequality in the form

\[\frac{1}{\rho} \langle T, U^\text{\textbullet} \rangle - \psi^\text{\textbullet} - \eta^\text{\textbullet} \theta^\text{\textbullet} - \frac{1}{\rho \theta} q \cdot g \geq 0. \]

Thus, the specific dissipation, which consists of the mechanical dissipation

\[\delta_m := \frac{1}{\rho} \langle T, U^\text{\textbullet} \rangle - \psi^\text{\textbullet} - \eta^\text{\textbullet} \theta^\text{\textbullet} = \theta \eta^\text{\textbullet} - Q \]

by using (4.45) and (4.47), and the thermal dissipation

\[\delta_{th} := -\frac{1}{\rho \theta} q \cdot g \]

fulfil the dissipation inequality

\[\delta = \delta_m + \delta_{th} \geq 0. \]

In order to enlarge the mechanical plasticity theory to a thermo-mechanical one, we add the temperature and the temperature gradient to the list of independent variables called thermo-kinematical variables, and the heat flux, the entropy, and the internal energy or the free energy to the dependent variables called caloro-dynamic variables.

Thermoplastic materials can be understood as material models with internal variables. The set of the internal variables contains in the case of plasticity the plastic strains and, eventually, hardening variables. For all of these variables we assume rate-independent evolution equations in the general form

\[U_p^\text{\textbullet} = U(U_e, \theta, g, U_p, Z_p, U^\text{\textbullet}, \theta^\text{\textbullet}, g^\text{\textbullet}) \]

\[Z_p^\text{\textbullet} = Z(U_e, \theta, g, U_p, Z_p, U^\text{\textbullet}, \theta^\text{\textbullet}, g^\text{\textbullet}) \]
as generalizations of (4.38) and (4.39). The set of additional constitutive equations for a thermomechanical material55 with internal variables is assumed to be
\[
\mathbf{T} = T\left(\mathbf{U}_e, \theta, \mathbf{g}, \mathbf{U}_p, \mathbf{Z}_p\right)
\]
(4.54)
\[
\mathbf{q} = q\left(\mathbf{U}_e, \theta, \mathbf{g}, \mathbf{U}_p, \mathbf{Z}_p\right)
\]
\[
\eta = \eta\left(\mathbf{U}_e, \theta, \mathbf{g}, \mathbf{U}_p, \mathbf{Z}_p\right)
\]
\[
\varepsilon = \varepsilon\left(\mathbf{U}_e, \theta, \mathbf{g}, \mathbf{U}_p, \mathbf{Z}_p\right)
\]
or
\[
\psi = \psi\left(\mathbf{U}_e, \theta, \mathbf{g}, \mathbf{U}_p, \mathbf{Z}_p\right).
\]

Instead of elastic ranges of the mechanical theory, we will now have to deal with \textbf{thermoelastic ranges}. These are specified by a \textit{yield criterion} assumed as a function
\[
\varphi\left(\mathbf{U}_e, \theta, \mathbf{g}, \mathbf{U}_p, \mathbf{Z}_p\right)
\]
(4.55)
which induces the \textit{yield condition}
\[
\varphi\left(\mathbf{U}_e, \theta, \mathbf{g}, \mathbf{U}_p, \mathbf{Z}_p\right) = 0
\]
(4.56)
and the \textit{loading condition}
\[
< \partial_{\mathbf{U}_e} \varphi, \mathbf{U}_e^* > + \partial_{\theta} \varphi \theta^* + \partial_{\mathbf{g}} \varphi \cdot \mathbf{g}^* > 0.
\]
(4.57)

If not both conditions are simultaneously fulfilled, a (thermo) \textit{elastic event} takes place, and hence the plastic variables do not evolve
\[
\mathbf{U}_p^* \equiv 0 \quad \mathbf{Z}_p^* \equiv 0 \quad \Rightarrow \quad \mathbf{U}_e^* \equiv \mathbf{U}^*
\]
(4.58)
which are side conditions of the functions U and Z. Otherwise it is a \textit{plastic event} or an event of \textit{yielding}, in which the plastic variables necessarily have to evolve according to (4.52) - (4.53).

We will next investigate the restrictions imposed on the constitutive equations by the \textit{CLAUSIUS-DUHEM inequality}. With the free energy from (4.54) we obtain for the dissipation inequality (4.48)
\[
0 \geq < \partial_{\mathbf{U}_e} \varphi, \mathbf{U}_e^* > + \partial_{\theta} \psi \theta^* + \partial_{\mathbf{g}} \psi \cdot \mathbf{g}^* + < \partial_{\mathbf{U}_p} \varphi, \mathbf{U}_p^* > + < \partial_{\mathbf{Z}_p} \psi, \mathbf{Z}_p^* >
\]
\[
+ \eta \theta^* - \frac{1}{\rho} < \mathbf{T}, \mathbf{U}_e^* > + \frac{1}{\rho \theta} \mathbf{q} \cdot \mathbf{g}
\]

(4.59)
\[
= < \partial_{\mathbf{U}_e} \psi - \frac{1}{\rho} \mathbf{T}, \mathbf{U}_e^* > + \left(\partial_{\theta} \psi + \eta \right) \theta^* + \partial_{\mathbf{g}} \psi \cdot \mathbf{g}^*
\]
\[
+ < \partial_{\mathbf{U}_p} \psi - \frac{1}{\rho} \mathbf{T}, \mathbf{U}_p^* > + < \partial_{\mathbf{Z}_p} \psi, \mathbf{Z}_p^* > + \frac{1}{\rho \theta} \mathbf{q} \cdot \mathbf{g}.
\]

If we first consider elastic events, then due to (4.58) there remains only the inequality

55 PERZYNA (1971) also includes higher spatial temperature gradients as independent variables. However, these drop out later since they have not counterpart in the dissipation inequality.
The exploitation of this inequality for states below the yield limit, where \(U^* \) and \(\theta^* \) are not restricted, leads by standard arguments to the conditions from gradient thermoelasticity, namely the independence of the free energy of the temperature gradient

\[
(4.61) \quad \psi = \psi(U_e, \theta, U_p, Z_p)
\]

instead of (4.54), and the thermoelastic potentials

\[
(4.62) \quad T = \rho \partial U_e \psi = T(U_e, \theta, U_p, Z_p)
\]

\[
(4.63) \quad \eta = -\partial \theta \psi = \eta(U_e, \theta, U_p, Z_p)
\]

as well as the heat conduction inequality

\[
(4.64) \quad q \cdot g \leq 0
\]

as necessary and sufficient conditions for the second law to hold during elastic events. With these findings, the mechanical dissipation \(\delta_m \) vanishes during elastic events.

Because of continuity, restrictions (4.61) - (4.64) must also hold when reaching the yield limit. If yielding occurs, however, then the additional terms of the CLAUSIUS-DUHEM inequality (4.59) must fulfil the residual dissipation inequality

\[
(4.65) \quad \frac{1}{\rho} < T - \partial U_p \psi, U_p^* > - \frac{1}{\rho} < \partial Z_p \psi, Z_p^* > \geq 0.
\]

This is a restriction on the yield criterion and the flow and hardening rules. The term \(\rho \partial U_p \psi \) can be interpreted as back stress. We conclude the following

Theorem 4.1. The CLAUSIUS-DUHEM inequality is fulfilled if and only if the following conditions hold:

- the representation of the free energy (4.61),
- the thermoelastic potentials (4.62) and (4.63) for the stress tensors and the entropy,
- the heat-conduction inequality (4.64),
- the residual dissipation inequality (4.65).

Identical Thermoelastic Behaviour

Up to this point, our analysis has been rather general. In order to further specify this setting for gradient plastic materials, we introduce another important assumption, which is the generalization of the Assumption 3.4 of isomorphic elasticity for all elastic ranges.

Assumption 4.1. The thermoelastic behaviour within all thermoelastic ranges of the elasto-plastic material is identical.
This means more precisely that during elastic events all measurable quantities like the stresses, the heat flux, and the heat supply depend only upon the elastic strains and the temperature and its gradient, but not upon the plastic variables \mathbf{U}_p and \mathbf{Z}_p. The consequences of this assumption shall be investigated next.

We obtain for elastic events zero mechanical dissipation and hence from (4.49)

$$\delta_m = 0 \quad \Rightarrow \quad Q = \theta \eta^*$$

with the local heat supply Q, which we consider as a measurable quantity - at least in principle. With (4.63) the right-hand side becomes for elastic events with $\mathbf{U} = \mathbf{U}_e$

$$\theta \eta^* = \theta (\langle \delta u \eta, \mathbf{U}^* \rangle + \partial \theta \eta \theta^*)$$

which shall be independent of \mathbf{U}_p, and \mathbf{Z}_p. This can only be the case if the following decomposition of the entropy exists

$$\eta(\mathbf{U}_e, \theta, \mathbf{U}_p, \mathbf{Z}_p) = \eta_c(\mathbf{U}_e, \theta) + \eta_p(\mathbf{U}_p, \mathbf{Z}_p).$$

After the above assumption, also the stresses shall not depend on the plastic variables. Hence we have the reduced stress law

$$\mathbf{T} = T(\mathbf{U}_e, \theta)$$

and instead of (4.62)

$$T(\mathbf{U}_e, \theta) = \rho \partial \mathbf{u}_e \psi.$$

Instead of (4.63) we obtain with (4.68)

$$\eta_c(\mathbf{U}_e, \theta) + \eta_p(\mathbf{U}_p, \mathbf{Z}_p) = - \partial \theta \psi$$

which leads to the split of the free energy with (4.47)

$$\psi = \psi_c(\mathbf{U}_e, \theta) - \theta \eta_p(\mathbf{U}_p, \mathbf{Z}_p) + \epsilon_p(\mathbf{U}_p, \mathbf{Z}_p)$$

such that

$$\eta_c(\mathbf{U}_e, \theta) = - \partial \theta \psi_c(\mathbf{U}_e, \theta)$$

with a (for the present) arbitrary function ϵ_p of the plastic variables \mathbf{U}_p and \mathbf{Z}_p.

The internal energy follows from (4.47)

$$\epsilon = \epsilon_c(\mathbf{U}_e, \theta) + \epsilon_p(\mathbf{U}_p, \mathbf{Z}_p)$$

with

$$\epsilon_c(\mathbf{U}_e, \theta) := \psi_c(\mathbf{U}_e, \theta) + \theta \eta_c(\mathbf{U}_e, \theta).$$

After the above assumption, the heat conduction can neither depend on the plastic variables \mathbf{U}_p and \mathbf{Z}_p, which gives rise to the reduced form of (4.54)

$$q = q(\mathbf{U}_e, \theta, \mathbf{g}).$$

We state these findings in the following
Theorem 4.2. The assumption of equal thermoelastic behaviour in all elastic ranges is fulfilled if and only if the following representations hold for the

- **entropy**
 \[\eta = - \partial_\theta \psi_e(U, \theta) + \eta_p(U_p, Z_p) \]

- **internal energy**
 \[\varepsilon = \psi_e(U, \theta) - \theta \partial_\theta \psi_e(U, \theta) + \varepsilon_p(U_p, Z_p) \]

- **free energy**
 \[\psi = \psi_e(U, \theta) - \theta \eta_p(U_p, Z_p) + \varepsilon_p(U_p, Z_p) \]

- **heat conduction**
 \[q = q(U, \theta, g) \]

- **hyperstresses**
 \[T = \rho \partial U \psi_e(U, \theta) \]

Accordingly, the following constitutive equations completely constitute the thermoplastic material model

- the elastic free energy
 \[\psi_e(U, \theta) \]

- the plastic entropy
 \[\eta_p(U_p, Z_p) \]

- the plastic internal energy
 \[\varepsilon_p(U_p, Z_p) \]

- the heat conduction law
 \[q(U, \theta, g) \]

- the yield criterion
 \[\phi(U, \theta, g, U_p, Z_p) \]

together with the flow and hardening rules to be considered later.

(4.72) gives for the residual dissipation inequality (4.65)

\[
0 \leq \frac{1}{\rho} \langle T - \partial U_p \varepsilon_p + \theta \partial U_p \eta_p, U_p^* \rangle \\
+ \langle - \partial Z_p \varepsilon_p + \theta \partial Z_p \eta_p, Z_p^* \rangle \\
= \frac{1}{\rho} \langle T, U_p^* \rangle + \delta \eta_p(U_p, Z_p) - \varepsilon_p(U_p, Z_p)^*.
\]

In order to determine the change of the temperature of the material point under consideration, we use the first law of thermodynamics (4.45) together with (4.31) and (4.74)

(4.78)
\[Q = \varepsilon^* - \frac{1}{\rho} \langle T, U_p^* \rangle = Q_e + Q_p \]

with a split of the heat supply into an elastic part

(4.79)
\[Q_e(U, \theta, U_e^*, \theta^*) := \varepsilon_e(U, \theta)^* - \frac{1}{\rho} \langle T, U_e^* \rangle \]

with (4.66)

\[= \theta \eta_e(U, \theta)^* \]
\[= c \theta^* - \frac{\theta}{\rho} \langle R, U_e^* \rangle \]

with
• the specific heat
 \[c(U_e, \theta) := \theta \partial_\theta \eta_e \]

• the stress-temperature tensor of order \((i+1)\)
 \[\mathcal{R}(U_e, \theta) := -\rho \partial_{U_e} \eta_e \]

• the stress-temperature hyper-vector
 \[R(U_e, \theta) := \{ \mathcal{R}, \ldots, \mathcal{R} \} \]

and a plastic part

\[Q_p := \varepsilon_p(U_p, Z_p) - \frac{1}{\rho} < T, U_p^\star >. \]

(4.80)

(4.78) and (4.79) can be solved for the temperature rate

\[c \theta^\star = Q - Q_p + \frac{\theta}{\rho} < R, U_e^\star >. \]

(4.81)

By this equation, we can integrate the temperature along the process and so determine the final temperature after some elasto-plastic process. Accordingly, temperature changes are caused by

1.) the heat supply \(Q\) from the outside
2.) the heat \(-Q_p\) generated by plastic yielding and hardening, and
3.) thermoelastic transformations due to the last term in (4.81).

We now specify the ansatz for the rate-independent evolution (4.52) - (4.53) for the plastic variables, namely the flow and the hardening rules in the following form

\[U_p^\star = \lambda U(U_e, \theta, g, U_p, Z_p) \]

(4.82)

\[Z_p^\star = \lambda Z(U_e, \theta, g, U_p, Z_p) \]

(4.83)

with a joint **plastic consistency parameter** \(\lambda\) and two functions \(U\) and \(Z\) of the listed arguments. \(\lambda\) is zero if and only if no yielding occurs, *i.e.*, during thermo-elastic events.

During yielding, however, \(\lambda\) is positive. In all cases the KUHN-TUCKER condition holds in the form

\[\lambda \phi = 0 \quad \text{with} \quad \lambda \geq 0 \quad \text{and} \quad \phi \leq 0. \]

(4.84)

The plastic parameter can be determined during yielding by the **consistency condition** as a consequence of the yield condition (4.56)

\[0 = < \partial_{U_e} \phi, U_e^\star > + \partial_{\theta} \phi \, \theta^\star + \partial_g \phi \cdot g^\star \]

(4.85)

\[+ < \partial_{U_p} \phi, \lambda U(U_e, \theta, g, U_p, Z_p) > \]

\[+ < \partial_{Z_p} \phi, \lambda Z(U_e, \theta, g, U_p, Z_p) > \]

which can be solved for the plastic parameter

\[\lambda = \alpha^{-1} [< \partial_{U_e} \phi, U_e^\star > + \partial_{\theta} \phi \, \theta^\star + \partial_g \phi \cdot g^\star] \]

(4.86)

with a scalar denominator
(4.87)
\[\alpha(U_e, \theta, g, U_p, Z_p) := -\langle \partial U_p \varphi, U(U_e, \theta, g, U_p, Z_p) \rangle - \langle \partial Z_p \varphi, Z(U_e, \theta, g, U_p, Z_p) \rangle. \]

Due to the loading condition (4.57), \(\lambda \alpha \) must be positive during plastic events. After (4.84), \(\lambda \) alone is positively introduced, and so \(\alpha \) must also be positive. After (4.87) this is a restriction to the functions \(U \) and \(Z \), and the yield criterion \(\varphi \).

Another restriction on these functions is obtained by the second law. We substitute (4.82) - (4.83) into the residual dissipation inequality (4.77)
\[(4.88) \]
\[< T - \rho \partial U_p \varepsilon_p + \rho \theta \partial U_p \eta_p, U(U_e, \theta, g, U_p, Z_p) > + < - \rho \partial Z_p \varepsilon_p + \rho \theta \partial Z_p \eta_p, Z(U_e, \theta, g, U_p, Z_p) > \geq 0. \]

In the example at the end of the next chapter it is demonstrated how this inequality can be satisfied for specific material functions.
5. Second-Order Gradient Elasticity and Plasticity

In this chapter we will particularize the approach of the preceding chapter to a second-order gradient theory. However, to make this chapter self-contained, we will repeat the entire deduction so that it can be read independently.

We start with the kinematics of small deformations.

For small deformations of simple materials, one uses the displacement gradient

\(H : = \text{Grad} \ u = F - I \)

and takes its symmetric part, the linear strain tensor

\(E : = \text{sym} \ H . \)

In the linear theory, no distinction is made between material and spatial differentiation. So we set

\(H' = \text{grad} \ u^* = \text{grad} \ v = L \)

with its symmetric part

\(D = \text{sym} \ \text{grad} \ u^*. \)

For a second-gradient material, we have different choices. MINDLIN/ESHEL (1968) suggest three sets of second-gradient variables.

(i) The second displacement gradient

\(U : = \text{grad} \ H = \text{grad} \ \text{grad} \ u \)

with right subsymmetry and 18 DOFs;

(ii) The gradient of the strain tensor

\(\text{grad} \ E = \text{grad} \ \text{sym} \ \text{grad} \ u \)

with left subsymmetry and 18 DOFs;

(iii) The completely symmetric part of the gradient of the strain tensor

\(\text{sym} \ \text{grad} \ E = \text{sym} \ \text{grad} \ \text{sym} \ \text{grad} \ u \)

with 10 DOFs, and the gradient of the curl of the displacement

\(\text{grad} \ \text{curl} \ u \)

with 8 DOFs.

For consistency with the preceding chapter, the first choice is made here. As a consequence, all triadics in the rest of this chapter show the right subsymmetry.
5.1 Second-Order Gradient Elasticity

In a second-order linear gradient elasticity theory the chosen kinematical variables are the symmetric linear strain tensor E after (5.2) and the second displacement gradient U with right subsymmetry after (5.5). The power conjugate stresses are the second-order CAUCHY-like stress tensor T and the third-order hyperstresses $T^{(3)}$ with the same symmetries as E and U, respectively.

The second-order hyperelastic theory is based on the existence of an elastic energy as a square form of the kinematical variables

$$w(E, U) = \frac{1}{2} E \cdot \mathcal{C}^{(4)}_{22} \cdot E + \frac{1}{2} E \cdot \mathcal{C}^{(5)}_{23} \cdot U + \frac{1}{2} U \cdot \mathcal{C}^{(6)}_{33} \cdot U$$

with elasticity tensors of 4th, 5th, and 6th order $\mathcal{C}^{(4)}_{22}, \mathcal{C}^{(5)}_{23},$ and $\mathcal{C}^{(6)}_{33}$, respectively, the first and last ones being symmetric.

We call the energy hemitropic, if

$$\mathcal{C}^{(4)}_{22} = Q \ast \mathcal{C}^{(4)}_{22}, \quad \mathcal{C}^{(5)}_{23} = Q \ast \mathcal{C}^{(5)}_{23}, \quad \mathcal{C}^{(6)}_{33} = Q \ast \mathcal{C}^{(6)}_{33}$$

holds for all proper orthogonal tensors Q. So these tensors must hemitropic tensors after Definition 0.1. We call the energy isotropic if (5.10) holds for all orthogonal tensors Q.

In the hemitropic case we can use the representation of (0.34)

$$w(E, U) = \frac{1}{2} \alpha_1 \text{tr}^2 E + \frac{1}{2} \alpha_2 E \cdot E + \alpha_3 \text{sym} (E \cdot U)$$

$$+ \frac{1}{2} \alpha_4 U \cdot U + \alpha_5/4 U \cdot (U^{[12]} + U^{[13]})$$

$$+ \frac{1}{2} \alpha_6 (U \cdot I) \cdot (U \cdot I) + \frac{1}{2} \alpha_7 (I \cdot U) \cdot (U \cdot I) + \frac{1}{2} \alpha_8 (I \cdot U) \cdot (I \cdot U)$$

The stresses are then determined by the potentials of this energy after (0.35) and (0.36) giving

$$T = \partial_E w(E, U) = \alpha_1 (\text{tr} E) I + \alpha_2 E - \alpha_3/2 (\text{grad curl} u + \text{grad}^T \text{curl} u)$$

and

$$T^{(3)} = \partial_U w(E, U)$$

$$= \text{sym}^{[23]}(\alpha_3 E \cdot E + \alpha_7 I \otimes U \cdot U + \alpha_8 I \otimes I \cdot U)$$

$$+ \alpha_4 U + \alpha_5/2 (U^{[12]} + U^{[13]}) + \alpha_6 U \cdot I \otimes I$$

$$= \alpha_3 \text{sym}^{[23]}(E \cdot E) + \alpha_4 \text{grad grad} u + \alpha_5/2 (\nabla \otimes u \otimes \nabla + \nabla \otimes \nabla \otimes u)$$

56 For further classification of the symmetry groups see AUFRAY/HE/QUANG (2018).
\[+ \alpha_6 \Delta u \otimes I + \alpha_7 \text{sym}^{[23]}(I \otimes \Delta u) + \alpha_8 \text{sym}^{[23]}(I \otimes \text{grad div } u) . \]

For the balance of linear momentum we need the divergence of these tensors.

\[
\text{div } T = \alpha_1 \text{grad } (tr \ E) + \alpha_2 \text{div } E + \alpha_3 \text{div sym } (e \cdot U) \\
= (\alpha_1 + \alpha_2/2) \text{grad div } u + \alpha_2/2 \Delta u - \alpha_3/2 \text{curl } \Delta u
\]

and

\[
\text{div } T^{[3]} = \alpha_3/2 \text{curl } \Delta u + (\alpha_4 + \alpha_6) \Delta \Delta u + (\alpha_5 + \alpha_7 + \alpha_8) \text{grad div } \Delta u
\]

The local balance of linear momentum (1.142) is now

\[
\rho (a - b) = \text{div } T - \text{div } T^{[3]} \\
= (\alpha_1 + \alpha_2/2) \text{grad div } u + \alpha_2/2 \Delta u \\
- \alpha_3 \text{curl } \Delta u - (\alpha_4 + \alpha_6) \Delta \Delta u - (\alpha_5 + \alpha_7 + \alpha_8) \text{grad div } \Delta u.
\]
5.2 Second-Order Gradient Elasto-Plasticity

The mechanical theory of gradient plasticity consists of the following ingredients.

1.) an additive decomposition of the linear strain tensor \mathbf{E} into an elastic and a plastic part

\begin{equation}
\mathbf{E} = \mathbf{E}_e + \mathbf{E}_p
\end{equation}

and an analogous one of the gradient of the strain tensor

\begin{equation}
\mathbf{U} = \mathbf{U}_e + \mathbf{U}_p
\end{equation}

with the following symmetry properties: $\mathbf{E} = \mathbf{E}^T$ and $U^{ijk} = U^{ikj}$ (right subsymmetry), which also apply to their elastic and plastic parts and to the conjugate stresses.

It depends on the specific approach whether \mathbf{E}_p and \mathbf{U}_p are considered as independent of each other (unconstrained gradient plasticity) or, alternatively, that \mathbf{U}_p is determined by $\text{grad} \mathbf{E}_p$ in analogy to (5.19) (constrained gradient plasticity). Since the first choice seems to be more general, we will consider the unconstrained case in what follows, and only eventually mention the constrained one, as in the Appendix of this chapter.

2.) two elastic laws taken as linear mappings of the elastic strain tensors into the second and third-order stress tensors

\begin{equation}
\mathbf{T} = \mathbf{C}_E \cdot \cdot \mathbf{E}_e + \mathbf{C}_{EU} \cdot \cdot \mathbf{U}_e
\end{equation}

\begin{equation}
\mathbf{T} = \mathbf{C}_{UE} \cdot \cdot \mathbf{E}_e + \mathbf{C}_U \cdot \cdot \mathbf{U}_e
\end{equation}

(see MINDLIN/ESHEL, 1968) by use of a fourth-order elasticity tensor \mathbf{C}_E, two fifth-order elasticity coupling tensors \mathbf{C}_{EU} and \mathbf{C}_{UE}, and a sixth-order elasticity tensor \mathbf{C}_U. The underlying assumption of these laws is that the stresses depend only on the elastic variables and are unaffected by plastic deformations.

For \mathbf{T} and \mathbf{E}_e being symmetric and \mathbf{U}_e having the right subsymmetry, these symmetries can also be assumed for the corresponding elasticity tensors.

Moreover, if the elastic laws are also hyperelastic, a major symmetry of the elasticity tensors can be imposed to \mathbf{C}_E and \mathbf{C}_U, and

\begin{equation}
\mathbf{E}_e \cdot \cdot \mathbf{C}_{EU} \cdot \cdot \mathbf{U}_e = \mathbf{U}_e \cdot \cdot \mathbf{C}_{UE} \cdot \cdot \mathbf{E}_e
\end{equation}

holds for all \mathbf{E}_e and \mathbf{U}_e, so that \mathbf{C}_{EU} is completely determined by \mathbf{C}_{UE}.

These laws can be isotropic or anisotropic. In the central symmetric case, however, the fifth-order tensors disappear.
At any instant these variables have to fulfill the mechanical balance laws after Theorem 1.21, namely

- the balance of linear momentum \(\text{div} (\mathbf{T} - \text{div} \mathbf{T}) + \rho \mathbf{b} = \rho \mathbf{u}^{**} \)
- the balance of angular momentum \(\mathbf{T} = \mathbf{\tau}. \)

The displacement or traction boundary conditions are (1.142) and (1.143) after MINDLIN (1965).

3.) a **yield limit** (yield criterion), which indicates the limit of the current elastic range. The general ansatz for the yield criterion in the strain space is

\[
\varphi(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p)
\]

where \(\mathbf{Z}_p \) is the vector of additional scalar or tensorial *internal variables* such as hardening variables. In what follows we will denote it as a second-order tensor, however, without the intention to constrain our considerations to this special case. The internal variables introduced in the formulation comprise the classical hardening or damage variables used in material modelling but also new variables related to the strain gradient or the elastic or plastic parts of the strain gradient. An internal variable is characterized by the fact that its evolution law is given by an ODE.

The yield limit is the kernel of this function

\[
(5.23) \quad \varphi(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p) = 0
\]

(yield condition), while we assume

\[
(5.24) \quad \varphi(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p) < 0
\]

(only) in the interior of the elastic range.

One can always transform the yield criterion from the strain space into the stress space by using the elastic laws (5.20) and (5.21).

Necessary and sufficient conditions for the material to yield are the yield condition and the **loading condition**

\[
(5.25) \quad \partial_{\mathbf{E}_e} \varphi \cdot \mathbf{E}^* + \partial_{\mathbf{U}_e} \varphi \cdot \mathbf{U}^* > 0
\]

which states a violation of the yield criterion if the total deformation increments would be purely elastic.

The presentation is limited to rate-independent plasticity, but viscoplasticity can be introduced in a straightforward manner into the model, for instance, but not exclusively, by the introduction of a viscoplastic potential from which viscoplastic flow rule and evolution laws for hardening variables are derived, see FOREST/ SIEVERT (2003).

4.) **flow rules** which determine the evolution of \(\mathbf{E}_p \) and \(\mathbf{U}_p \). A general rate-independent unconstrained ansatz for them would be first-order ODEs depending on practically all variables and the rates of the total deformations

\[
(5.26) \quad \mathbf{E}_p^* = E(\mathbf{E}_p, \mathbf{E}_e, \mathbf{U}_p, \mathbf{U}_e, \mathbf{Z}_p, \mathbf{E}^*, \mathbf{U}^*)
\]
\((5.27) \quad \mathbf{U}_p^* = U(\mathbf{E}_p, \mathbf{E}_e, \mathbf{U}_p, \mathbf{U}_e, \mathbf{Z}_p, \mathbf{E}^*, \mathbf{U}^*) \).

If we, however, would assume \(\mathbf{U}_p \) is determined by \(\text{grad} \mathbf{E}_p \) (constrained gradient plasticity) then the second flow rule \(\mathbf{U} \) is not needed since the evolution of \(\mathbf{U}_p \) would be given through \(\mathbf{E} \).

In what follows we will not use (5.28) but instead (5.26) and (5.27) which we consider as describing the more general case.

5.) an evolution equation called hardening rule for the additional variable(s) \(\mathbf{Z}_p \), which is assumed to be of the same form as the flow rules above

\((5.29) \quad \mathbf{Z}_p^* = Z(\mathbf{E}_p, \mathbf{E}_e, \mathbf{U}_p, \mathbf{U}_e, \mathbf{Z}_p, \mathbf{E}^*, \mathbf{U}^*) \).

These constitutive laws establish a complete mechanical format for a gradient elasto-plasticity.

We now specify the ansatz for the rate-independent evolution (5.26), (5.27), (5.29) for the plastic variables, namely the flow and the hardening rules in the following form

\((5.30) \quad \mathbf{E}_p^* = \lambda E(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p) \)

\((5.31) \quad \mathbf{U}_p^* = \lambda U(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p) \)

\((5.32) \quad \mathbf{Z}_p^* = \lambda Z(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p) \)

with a joint plastic consistency parameter \(\lambda \) and three functions \(E, U, Z \) of the listed arguments. \(\lambda \) is zero if and only if no yielding occurs, \(i.e. \) during elastic events. During yielding, however, \(\lambda \) is positive. In all cases the KUHN-TUCKER condition holds in the form

\((5.33) \quad \lambda \varphi = 0 \quad \text{with} \quad \lambda \geq 0 \quad \text{and} \quad \varphi \leq 0 \).

The plastic parameter can be determined during yielding by the consistency condition as a consequence of the yield condition (5.23)

\((5.34) \quad 0 = \partial_{\mathbf{E}_e} \varphi \cdot \mathbf{E}_e^* + \partial_{\mathbf{U}_e} \varphi \cdot \mathbf{U}_e^*
\quad + \partial_{\mathbf{E}_p} \varphi \cdot \lambda E(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p)
\quad + \partial_{\mathbf{U}_p} \varphi \cdot \lambda U(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p)
\quad + \partial_{\mathbf{Z}_p} \varphi \cdot \lambda Z(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p) \)

which can be solved for the plastic parameter

\((5.35) \quad \lambda = \alpha^{-1} (\partial_{\mathbf{E}_e} \varphi \cdot \mathbf{E}_e^* + \partial_{\mathbf{U}_e} \varphi \cdot \mathbf{U}_e^*) \)

with a scalar denominator

\((5.36) \quad \alpha(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p) = - \partial_{\mathbf{E}_p} \varphi \cdot E(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p)
\quad - \partial_{\mathbf{U}_p} \varphi \cdot U(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p)
\quad - \partial_{\mathbf{Z}_p} \varphi \cdot Z(\mathbf{E}_e, \mathbf{U}_e, \mathbf{E}_p, \mathbf{U}_p, \mathbf{Z}_p). \)

Due to the loading condition (5.25), \(\lambda \alpha \) must be positive during plastic events. After (5.33), \(\lambda \) alone is positive, and so \(\alpha \) must also be positive. After (5.36) this is a restriction to the functions \(E, U, Z \), and the yield criterion.
5.3 Second-Order Gradient Thermo-Elastoplasticity

We use the energy balance (first law of thermodynamics) in the local form

\[\rho \varepsilon^* = \rho Q + T \cdot E^* + \frac{1}{\rho} \mathcal{T} \cdot U^*. \]

with the stress power density \(T \cdot E^* + \frac{1}{\rho} \mathcal{T} \cdot U^* \) and the heat supply per unit mass and time \(Q \), which results from irradiation \(r \) and conduction \(q \) in the usual form

\[Q = r - (\text{div} q)/\rho. \]

By the introduction of the HELMHOLTZ free energy

\[\psi := \varepsilon - \theta \eta \]

we assume the second law as the CLAUSIUS-DUHEM inequality in the form

\[\frac{1}{\rho} T \cdot E^* + \frac{1}{\rho} \mathcal{T} \cdot U^* - \psi^* - \eta \theta^* - \frac{1}{\rho \theta} q \cdot g \geq 0. \]

Thus, the specific dissipation, which consists of the mechanical dissipation

\[\delta_m := \frac{1}{\rho} T \cdot E^* + \frac{1}{\rho} \mathcal{T} \cdot U^* - \psi^* - \eta \theta^* = \theta \eta^* - Q \]

by using (5.37) and (5.39), and the thermal dissipation

\[\delta_{th} := - \frac{1}{\rho \theta} q \cdot g \]

fulfil the dissipation inequality

\[\delta = \delta_m + \delta_{th} \geq 0. \]

In order to enlarge the mechanical plasticity theory to a thermo-mechanical one, we add the temperature and the temperature gradient to the list of independent variables called thermo-kinematical variables, and the heat flux, the entropy, and the internal energy or the free energy to the dependent variables called calorodynamic variables.

Thermoplastic materials can be understood as material models with internal variables. The set of the internal variables contains in the case of plasticity the first and second-order plastic strains and, eventually, hardening variables. For all of these variables we assume as generalizations of (5.26), (5.27), (5.29) rate-independent evolution equations in the general form

\[E_p^* = E(E_e, U_e, \theta, g, E_p, U_p, Z_p, E^*, U^*, \theta^*, g^*) \]

\[U_p^* = U(E_e, U_e, \theta, g, E_p, U_p, Z_p, E^*, U^*, \theta^*, g^*) \]

\[Z_p^* = Z(E_e, U_e, \theta, g, E_p, U_p, Z_p, E^*, U^*, \theta^*, g^*) \].
Again, U will only be needed if we consider U_p as an internal variable independent of E_p. The set of additional constitutive equations for a thermomechanical material with internal variables is assumed to be

$$
T = T(E_e, U_e, \theta, g, E_p, U_p, Z_p)
$$

(5.47)

$$
\dot{T} = G(E_e, U_e, \theta, g, E_p, U_p, Z_p)
$$

and, hence, the plastic variables do not evolve

$$
\dot{\epsilon} = \epsilon(E_e, U_e, \theta, g, E_p, U_p, Z_p)
$$

If not both conditions are simultaneously fulfilled, we consider it as a (thermo) plastic event or an event of yielding, in which the plastic variables necessarily have to evolve according to (5.44) - (5.46).

We will next investigate the restrictions imposed on the constitutive equations by the CLAUSIUS-DUHEM inequality. With the free energy (5.39) we obtain for the inequality (5.40)

$$
0 \geq \partial E_e \psi \cdot E_e^* + \partial U_e \psi \cdot (U_e^* + \partial \theta \psi \theta^* + \partial g \psi \cdot g^* + \partial E_p \psi \cdot E_p^* + \partial U_p \psi \cdot U_p^*)
$$

(5.52)

$$
+ \partial Z_p \psi \cdot Z_p^* + \eta \theta^* - \frac{1}{\rho} T \cdot (E_e^* + E_p^*) - \frac{1}{\rho} \dot{T} \cdot (U_e^* + U_p^*) + \frac{1}{\rho \theta} q \cdot g
$$

$$
= (\partial E_e \psi - \frac{T}{\rho}) \cdot E_e^* + (\partial U_e \psi - \frac{1}{\rho} \dot{T}) \cdot (U_e^* + \partial \theta \psi + \eta) \theta^* + \partial g \psi \cdot g^*
$$

$$
+ (\partial E_p \psi - \frac{1}{\rho} \dot{T}) \cdot E_p^* + \partial Z_p \psi \cdot Z_p^* + \frac{1}{\rho \theta} q \cdot g
$$
By standard arguments which can be found in the preceding chapter, we obtain the following results.

Theorem 4.1. The CLAUSIUS-DUHEM inequality is fulfilled if and only if the following conditions hold:

- the representation of the free energy
 \[
 \psi = \psi(E_e, U_e, \theta, E_p, U_p, Z_p)
 \]
- the thermoelastic potentials (5.54) - (5.56) for the stress tensors and the entropy
 \[
 \begin{align*}
 T &= \rho \partial_{E_e} \psi = T(E_e, U_e, \theta, E_p, U_p, Z_p) \\
 \mathcal{T} &= \rho \partial_{U_e} \psi = \mathcal{T}(E_e, U_e, \theta, E_p, U_p, Z_p) \\
 \eta &= -\partial_{\theta} \psi = \eta(E_e, U_e, \theta, E_p, U_p, Z_p)
 \end{align*}
 \]
- the heat-conduction inequality
 \[
 q \cdot g \leq 0
 \]
- the residual dissipation inequality
 \[
 \left(\frac{T}{\rho} - \partial_{E_p} \psi \right) \cdot E_p^* + \left(\frac{1}{\rho} \mathcal{T} - \partial_{U_p} \psi \right) : U_p^* - \partial_{Z_p} \psi \cdot Z_p^* \geq 0.
 \]

Identical Thermoelastic Behaviour

If we again apply the Assumption 4.1 of identical thermoelastic behaviour in all thermoelastic ranges, we can conclude that during elastic events all measurable quantities like the stresses, the heat flux, and the heat supply depend only upon the elastic strains and the temperature and its gradient, but not upon the plastic variables E_p, U_p, and Z_p. The consequences of this assumption have already been investigated in the preceding chapter. Here we just summarize the results in analogy to Theorem 4.2.

Theorem 5.2. The assumption of equal thermoelastic behaviour in all elastic ranges is fulfilled if and only if the following material functions

with the following material functions

- the elastic free energy $\psi_e(E_e, U_e, \theta)$
- the plastic entropy $\eta_p(E_p, U_p, Z_p)$
- the plastic internal energy $\varepsilon_p(E_p, U_p, Z_p)$

\[^{[57]}\] see also the formulations by FOREST/AMESTOY (2008) and VOYIADJIS/FAGHIHI (2012, 2013).
• the heat conduction law
\[q(E_e, U_e, \theta, g) \]
give the representations for the total

• entropy
\[\eta = -\partial_\theta \psi_e(E_e, U_e, \theta) + \eta_p(E_p, U_p, Z_p) \]

• internal energy
\[\varepsilon = \psi_e(E_e, U_e, \theta) - \theta \partial_\theta \psi_e(E_e, U_e, \theta) + \varepsilon_p(E_p, U_p, Z_p) \]

• free energy
\[\psi = \psi_e(E_e, U_e, \theta) - \theta \partial_\theta \psi_e(E_e, U_e, \theta) + \varepsilon_p(E_p, U_p, Z_p) \]

• heat conduction
\[q = q(E_e, U_e, \theta, g) \]

• 2nd-order stresses
\[T = \rho \partial E_e \psi_e(E_e, U_e, \theta) \]

• 3rd-order stresses
\[\tilde{T} = \rho \partial U_e \psi_e(E_e, U_e, \theta) \]

These material functions constitute together with the yield criterion (5.48) and the flow and hardening rules the complete material model for a second-gradient elastoplastic material.

(5.68) gives for the residual dissipation inequality (5.58)

\[0 \leq \left(-\rho \tilde{T} \psi_p + \theta \partial \psi_p \eta_p \right) : E_p^* + \left(\rho \tilde{T} \partial U_p \psi_p + \theta \partial \psi_p \eta_p \right) : U_p^* \]

\[+ \left(-\partial Z_p \psi_p + \theta \partial \psi_p \eta_p \right) : Z_p^* \]

\[= \frac{1}{\rho} \tilde{T} : E_p^* + \frac{1}{\rho} \tilde{T} : U_p^* + \theta \eta_p(E_p, U_p, Z_p)^* - \varepsilon_p(E_p, U_p, Z_p)^* \]

In order to determine the change of the temperature of the material point, we use the first law of thermodynamics (5.37) together with (5.18) and (5.19) and (5.69) to obtain the split

(5.60)
\[Q = Q_e + Q_p \]

into an elastic part

(5.61)
\[Q_e(E_e, U_e, \theta, E_e^*, U_e^*, \theta^*) := c \theta^* - \frac{\theta}{\rho} (R \cdot E_e^* + R \cdot U_e^*) \]

with

• the specific heat
\[c(E_e, U_e, \theta) := \theta \partial_\theta \eta_e \]

• the 2nd-order stress-temperature tensor
\[R(E_e, U_e, \theta) := -\rho \partial E_e \eta_e \]

• the 3rd-order stress-temperature tensor
\[R(E_e, U_e, \theta) := -\rho \partial U_e \eta_e \]

and a plastic part

(5.62)
\[Q_p := \varepsilon_p(E_p, U_p, Z_p)^* - \frac{\tilde{T}}{\rho} : E_p^* - \frac{1}{\rho} \tilde{T} : U_p^* \]

This can be solved for the temperature rate
(5.63) \[c \theta^* = Q - Q_p + \frac{\theta}{\rho} (R \cdot \mathbf{e}^e + R \cdot \mathbf{u}^*) . \]

By this equation, we can integrate the temperature along the process and so determine the final temperature after some elasto-plastic process. Accordingly, temperature changes are caused by
1.) the heat supply \(Q \) from the outside
2.) the heat \(-Q_p \) generated by plastic yielding and hardening, and
3.) thermoelastic transformations due to the last term in (5.63).

We now specify the ansatz for the rate-independent evolution (5.44) - (5.46) for the plastic variables, namely the flow and the hardening rules in the following form
\[\mathbf{e}^p = \lambda (\mathbf{e}^e, \mathbf{u}^e, \theta, \mathbf{g}, \mathbf{e}^p, \mathbf{u}^p, \mathbf{z}^p) \]
\[\mathbf{u}^p = \lambda (\mathbf{e}^e, \mathbf{u}^e, \theta, \mathbf{g}, \mathbf{e}^p, \mathbf{u}^p, \mathbf{z}^p) \]
\[\mathbf{z}^p = \lambda (\mathbf{e}^e, \mathbf{u}^e, \theta, \mathbf{g}, \mathbf{e}^p, \mathbf{u}^p, \mathbf{z}^p) \]

with a joint plastic consistency parameter \(\lambda \) and three functions \(E, U, \) and \(Z \) of the listed arguments. \(\lambda \) is zero if and only if no yielding occurs, i.e. during thermo-elastic events. During yielding, however, \(\lambda \) is positive. In all cases the KUHN-TUCKER condition holds in the form
\[\lambda \varphi = 0 \quad \text{with} \quad \lambda \geq 0 \quad \text{and} \quad \varphi \leq 0 . \]

The plastic parameter can be determined during yielding by the consistency condition as a consequence of the yield condition (5.49) in the form \(\varphi^* = 0 \) as
\[\lambda = \alpha^{-1} (\partial_{\mathbf{e}^e} \varphi \cdot \mathbf{e}^e + \partial_{\mathbf{u}^e} \varphi \cdot \mathbf{u}^e + \partial_{\theta} \varphi \cdot \theta^* + \partial_{\mathbf{g}} \varphi \cdot \mathbf{g}^*) \]

with a scalar denominator
\[\alpha(\mathbf{e}^e, \mathbf{u}^e, \theta, \mathbf{g}, \mathbf{e}^p, \mathbf{u}^p, \mathbf{z}^p) := - \partial_{\mathbf{e}^p} \varphi \cdot \mathbf{e}^e + \partial_{\mathbf{u}^e} \varphi \cdot \mathbf{u}^e + \partial_{\theta} \varphi \cdot \theta^* + \partial_{\mathbf{g}} \varphi \cdot \mathbf{g}^* \]
\[- \partial_{\mathbf{u}^p} \varphi \cdot \mathbf{u}^e + \partial_{\theta} \varphi \cdot \theta^* + \partial_{\mathbf{g}} \varphi \cdot \mathbf{g}^* \]
\[- \partial_{\mathbf{z}^p} \varphi \cdot \mathbf{z}^p \]

Due to the loading condition (5.50), \(\lambda \alpha \) must be positive during plastic events. After (5.67), \(\lambda \) alone is positively introduced, and so \(\alpha \) must also be positive. After (5.69) this is a restriction to the functions \(E, U, Z \), and the yield criterion.

Another restriction on these functions is obtained by the second law. We substitute (5.64) - (5.66) into the residual dissipation inequality (5.59)
\[(T - \rho \partial_{\mathbf{e}^p} \mathbf{e}^p + \rho \theta \partial_{\mathbf{e}^p} \eta^p) \cdot \mathbf{e}^e + \rho \theta \partial_{\mathbf{u}^p} \eta^p \cdot \mathbf{u}^p + \rho \theta \partial_{\mathbf{z}^p} \eta^p \cdot \mathbf{z}^p \]
\[+ (\mathbf{T} - \rho \partial_{\mathbf{u}^p} \mathbf{e}^p + \rho \theta \partial_{\mathbf{u}^p} \eta^p) \cdot \mathbf{u}^e + \rho \theta \partial_{\mathbf{z}^p} \eta^p \cdot \mathbf{z}^p \]
This restriction on the functions E, U, Z, and the yield criterion will be considered in the following example.

Example

We will next discuss the foregoing framework for gradient plasticity by means of a simple example, which is a generalization of the one in BERTRAM/KRAWIETZ (2012). It is based on a one-dimensional PRAGER model with two springs and a ST.-VENANT element which stands for dry friction. This model performs an elastoplastic behaviour with linear kinematical hardening induced by the spring D, while the stresses can be determined by the strains in the spring C. We will generalize this model into three dimensions first with full anisotropy, and finally particularize it to the isotropic case.

\[
\begin{align*}
\rho \psi_e(E_e, U_e, \theta) &= \frac{1}{2} E_e \cdot C^4_{E} \cdot E_e + \frac{1}{2} U_e \cdot C^6_{U} \cdot U_e + \frac{1}{2} \cdot U_e + E_e \cdot C^5_{EU} \cdot U_e \\
&+ c \rho (\Delta \theta - \theta \ln \frac{\theta}{\theta_0}) + \Delta \theta (R \cdot E_e + R \cdot U_e)
\end{align*}
\]

with higher-order elasticity tensors C^4_{E}, C^6_{U}, C^5_{EU} with the same symmetry properties as in (5.22), two constant stress-temperature tensors R and R, a constant specific heat c after (5.60), a reference temperature θ_0, and the deviation from it $\Delta \theta := \theta - \theta_0$.

Since all material parameters are taken as constant, this model applies only to moderate temperature changes and small deformations.

We obtain with (5.65) - (5.66) the thermoelastic laws for the stresses

\[
\begin{align*}
T &= C^4_{E} \cdot E_e + C^6_{EU} \cdot U_e + \Delta \theta R \\
\tilde{T} &= E_e \cdot C^5_{EU} + C^6_{U} \cdot U_e + \Delta \theta R
\end{align*}
\]

in analogy to (5.20) - (5.21).

By the results of Theorem 5.2 we get for the elastic entropy
\begin{align}
\rho \eta_e(E_e, K_e, \theta) &= -R \cdot E_e - R : U_e + \rho c ln \frac{\theta}{\theta_0} \\
\text{and for the elastic internal energy} \\
\rho \varepsilon_e(E_e, U_e, \theta) &= \frac{1}{2} E_e \cdot \vec{D}_E \cdot E_e + \frac{1}{2} U_e \cdot \vec{D}_U : U_e \\
&\quad + E_e \cdot \vec{C}_{EU} : U_e + c \rho \Delta \theta - \theta_0 (R \cdot E_e + R : U_e).
\end{align}

For the heat flux we choose a FOURIER-type law
\begin{equation}
q = -K \cdot g
\end{equation}
with a second-order positive semi-definite tensor \(K \) so that the heat conduction inequality (5.57) is always fulfilled.

In accordance with the PRAGER model we write for the back stresses two elastic laws in the plastic strains
\begin{align}
T_B &= \vec{D}_E \cdot E_p + \vec{D}_{EU} : U_p \\
T_B^{(3)} &= E_p \cdot \vec{D}_{EU} + \vec{D}_U : U_p
\end{align}
with material tensors \(\vec{D}_E, \vec{D}_U, \vec{D}_{EU} \) with the usual symmetry properties (5.22).

We introduce the specific plastic work in some time interval \([t_0, t_1]\) as the work of the effective stresses upon the plastic deformations
\begin{equation}
w_{plast} := \int_{t_0}^{t_1} \frac{1}{\rho} [(T - T_B) \cdot E_p^* + (T - T_B) \cdot U_p^*] dt
\end{equation}
\[\Rightarrow w_{plast}^* = \frac{1}{\rho} (T - T_B) \cdot E_p^* + \frac{1}{\rho} (T - T_B) \cdot U_p^* \]
as the only hardening variable in our example, so \(Z_p \equiv w_{plast}. \)

The plastic part of the entropy is set to zero
\begin{equation}
\eta_p(E_p, U_p, Z_p) = 0.
\end{equation}

We will later show under which restrictions this ansatz will satisfy the residual dissipation inequality, and also that other non-trivial choices for the plastic entropy will work as well.

We also assume a quadratic form for the plastic part of the internal energy
\begin{align}
\rho \varepsilon_p(E_p, U_p, Z_p) &= \frac{1}{2} E_p \cdot \vec{D}_E \cdot E_p + \frac{1}{2} U_p \cdot \vec{D}_U : U_p \\
&\quad + E_p \cdot \vec{D}_{EU} : U_p + \rho \mu w_{plast}
\end{align}
with a scalar coefficient \(\mu. \)
In accordance with (5.58) and (5.80) we can in fact verify the ansatz (5.77) and (5.78) for the back stresses.

We use a generalization of the anisotropic v. Mises yield criterion (1928) in the stress space

\[
\varphi = \begin{pmatrix} T - T_B \end{pmatrix} \cdot \begin{pmatrix} \mathbf{W} \end{pmatrix} \cdot \begin{pmatrix} T - T_B \end{pmatrix} + \begin{pmatrix} T \end{pmatrix} \cdot \begin{pmatrix} T_B \end{pmatrix} : \begin{pmatrix} \mathbf{W} \end{pmatrix} \cdot \begin{pmatrix} T - T_B \end{pmatrix} + \begin{pmatrix} T - T_B \end{pmatrix} \cdot \begin{pmatrix} \mathbf{W} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{T} - \mathbf{T}_B \end{pmatrix} - \sigma_Y (w_{plast}, \theta, \mathbf{g})^2
\]

with three material tensors \(\mathbf{W}, \mathbf{\tilde{W}}, \) and \(\mathbf{\tilde{W}} \) with the same symmetry properties as in (5.22), and reflecting the symmetry of the material, and a scalar yield stress \(\sigma_Y \) depending on the plastic work, the temperature, and the temperature gradient. However, to the best of our knowledge a direct dependence of the yield function on the temperature gradient has not yet been proposed in the literature.

Uniqueness and regularity of the model are ensured if the yield function is convex with respect to all its arguments, including the higher-order strain (or stress). In the proposed quadratic potential (5.82), convexity of the yield surface is ensured if the linear elastic mapping is positive-definite.

If the stresses and the back stresses are substituted by (5.72), (5.73), (5.77), (5.78), the assumed form of the yield criterion can in fact be transformed into the strain space

\[
\varphi(E_e, U_e, \theta, \mathbf{g}, E_p, U_p, w_{plast}) = \begin{pmatrix} C_E \end{pmatrix} \cdot E_e + \begin{pmatrix} C_{EU} \end{pmatrix} \cdot U_e + \Delta \theta R - \begin{pmatrix} D_E \end{pmatrix} \cdot E_p - \begin{pmatrix} D_{EU} \end{pmatrix} \cdot U_p \cdot \begin{pmatrix} \mathbf{W} \end{pmatrix}
\]

\[
\begin{pmatrix} \mathbf{W} \end{pmatrix} : \begin{pmatrix} \mathbf{T} - \mathbf{T}_B \end{pmatrix} - \sigma_Y (w_{plast}, \theta, \mathbf{g})^2
\]

such that the loading condition (5.50) becomes

\[
0 < [2(T - T_B) \cdot \begin{pmatrix} \mathbf{W} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{\tilde{W}} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{T} - \mathbf{T}_B \end{pmatrix}] \cdot \begin{pmatrix} C_E \end{pmatrix} \cdot E_e + \begin{pmatrix} C_{EU} \end{pmatrix} \cdot U_e + \theta^* R
\]

\[
+ \begin{pmatrix} \begin{pmatrix} T \end{pmatrix} \cdot \begin{pmatrix} T_B \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{W} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{T} - \mathbf{T}_B \end{pmatrix} \cdot \begin{pmatrix} \mathbf{\tilde{W}} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{T} - \mathbf{T}_B \end{pmatrix} - 2 \sigma_Y (\partial_\theta \sigma_Y \theta^* + \partial_\mathbf{g} \sigma_Y \cdot \mathbf{g}^*) \cdot \begin{pmatrix} \mathbf{W} \end{pmatrix}
\]

The associated flow rules are

\[
E_p^* = \lambda \partial_\mathbf{T} \varphi = \lambda [2 \begin{pmatrix} \mathbf{W} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{W} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{T} - \mathbf{T}_B \end{pmatrix} + \begin{pmatrix} \mathbf{\tilde{W}} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{T} - \mathbf{T}_B \end{pmatrix}]
\]
(5.86) \[U_p^* = \lambda \partial \varphi / \partial \mathcal{T} = \lambda [2 \mathcal{W} : (\mathcal{T} - \mathcal{T}_B) + (\mathcal{T} - \mathcal{T}_B) \cdot \mathcal{W}] \]

with a joint plastic consistency parameter \(\lambda \). The consistency condition requires with (5.18), (5.19), (5.72), (5.73), (5.77), (5.78), (5.83), (5.85), (5.86)

\[
0 = \varphi (E_v, U_v, \theta, g, E_p, U_p, w_{\text{plast}})^* = 2 (T - T_B) \cdot \mathcal{W} \cdot (T - T_B)^* + 2 (T - T_B) \cdot \mathcal{W} : (T - T_B)^* + (T - T_B)^* \cdot \mathcal{W} \cdot (T - T_B)^* - 2 \sigma_y \{ \partial_{\nu_{\text{plast}}} \partial \varphi \left[\frac{1}{\rho} (T - T_B) \cdot U_p^* + \frac{1}{\rho} (T - T_B) \cdot E_p^* \right] + \partial_\lambda \sigma \theta^* + \partial_\mu \sigma \gamma \cdot g^* \} = [2 (T - T_B) \cdot \mathcal{W} + \mathcal{W} : (T - T_B)]
\]

\[
\cdots [C_E \cdot (E - E_p)^* + C_{EU} : (U - U_p)^* + \Delta \theta^* R - D_E \cdot E_p^* - D_{EU} : U_p^*] + 2 (T - T_B) : \mathcal{W} + (T - T_B) \cdot \mathcal{W}
\]

\[
\cdots [(E - E_p)^* \cdot C_{EU} + C_{EU} : (U - U_p)^* + \Delta \theta^* R - D_{EU} : U_p^* - E_p^* \cdot D_{EU}] - 2 \sigma_y \{ \partial_{\nu_{\text{plast}}} \partial \varphi \left[\frac{1}{\rho} (T - T_B) \cdot U_p^* + \frac{1}{\rho} (T - T_B) \cdot E_p^* \right] + \partial_\lambda \sigma \theta^* + \partial_\mu \sigma \gamma \cdot g^* \}
\]

(5.87) \[= [2 (T - T_B) \cdot \mathcal{W} + \mathcal{W} : (T - T_B)]
\]

\[
\cdots [C_E \cdot (E - \lambda \{ 2 \mathcal{W} \cdot (T - T_B) + \mathcal{W} : (T - T_B) \} \}) + C_{EU} : (U - \lambda \{ 2 \mathcal{W} : (T - T_B) + (T - T_B) \cdot \mathcal{W} \}) + \Delta \theta^* R - D_E \cdot \lambda \{ 2 \mathcal{W} \cdot (T - T_B) + \mathcal{W} : (T - T_B) \cdot \mathcal{W} \} - D_{EU} \cdot \lambda \{ 2 \mathcal{W} : (T - T_B) + (T - T_B) \cdot \mathcal{W} \}
\]

\[
\cdots [(E - \lambda \{ 2 \mathcal{W} \cdot (T - T_B) + \mathcal{W} : (T - T_B) \}) \cdot C_{EU} + C_{EU} : (U - \lambda \{ 2 \mathcal{W} : (T - T_B) + (T - T_B) \cdot \mathcal{W} \}) + \Delta \theta^* R - D_{EU} : \lambda \{ 2 \mathcal{W} : (T - T_B) + (T - T_B) \cdot \mathcal{W} \} - \lambda \{ 2 \mathcal{W} \cdot (T - T_B) + \mathcal{W} : (T - T_B) \cdot \mathcal{W} \}]
\]
\[-2\sigma_y \left[\partial_{\text{plast}} \sigma_y \left(\frac{T - T_B}{\rho} \right) \right] \cdot \lambda \left\{ 2\mathbf{W} \cdot (T - T_B) + \mathbf{W} : (T - T_B) \right\} + \frac{1}{\rho} \left((T - T_B) \right) \cdot \lambda \left\{ 2\mathbf{W} \cdot (T - T_B) + (T - T_B) \cdot \mathbf{W} \right\} \right] + \partial_{\theta} \sigma_y \theta^* + \partial_{\rho} \sigma_y \cdot g^* \]

or

\[
\begin{align*}
2 (T - T_B) \cdot (\mathbf{W} + \mathbf{W} : (T - T_B) \right\} \right] \cdot \left[(\mathbf{G}_E \cdot \mathbf{E}^* + \mathbf{G}_{EU} \cdot \mathbf{U}^* + \Delta \theta^* \mathbf{R}) \right] \\
+ \left\{ 2\mathbf{W} \cdot \mathbf{C}_E \cdot 2\mathbf{W} + \mathbf{C}_{EU} \cdot \mathbf{W}^* + \mathbf{D}_E \cdot 2\mathbf{W} + \mathbf{D}_{EU} \cdot \mathbf{W}^* \right\} \\
\mathbf{W} \cdot \left\{ 2\mathbf{W} \cdot \mathbf{C}_{EU} + \mathbf{C}_U : \mathbf{W}^* + \mathbf{D}_U : \mathbf{W}^* + \mathbf{D}_{EU} : \mathbf{W}^* \right\} \\
+ 4\sigma_y \frac{1}{\rho} \partial_{\text{plast}} \sigma_y \mathbf{W} \right\} \cdot (T - T_B) \\
+ (T - T_B) \cdot \left\{ 2\mathbf{W} \cdot \mathbf{C}_E \cdot \mathbf{W} + \mathbf{C}_{EU} : 2\mathbf{W} + \mathbf{D}_E \cdot \mathbf{W} + \mathbf{D}_{EU} \cdot \mathbf{W} \right\} \\
\mathbf{W} \cdot \left\{ \mathbf{W} \cdot \mathbf{C}_{EU} + \mathbf{C}_U : 2\mathbf{W} + \mathbf{D}_U : 2\mathbf{W} + \mathbf{D}_{EU} : 2\mathbf{W} \right\} \\
+ 2\sigma_y \frac{1}{\rho} \partial_{\text{plast}} \sigma_y \mathbf{W} \right\} \cdot (T - T_B) \\
+ (T - T_B) \cdot \left\{ 2\mathbf{W} \cdot \mathbf{C}_E \cdot \mathbf{W} + \mathbf{C}_{EU} : 2\mathbf{W} + \mathbf{D}_E \cdot \mathbf{W} + \mathbf{D}_{EU} \cdot \mathbf{W} \right\} \\
\mathbf{W} \cdot \left\{ \mathbf{W} \cdot \mathbf{C}_{EU} + \mathbf{C}_U : 2\mathbf{W} + \mathbf{D}_U : 2\mathbf{W} + \mathbf{D}_{EU} : 2\mathbf{W} \right\} \\
+ 2\sigma_y \frac{1}{\rho} \partial_{\text{plast}} \sigma_y \mathbf{W} \right\} \cdot (T - T_B) \\
+ (T - T_B) \cdot \left\{ 2\mathbf{W} \cdot \mathbf{C}_E \cdot \mathbf{W} + \mathbf{C}_{EU} : 2\mathbf{W} + \mathbf{D}_E \cdot \mathbf{W} + \mathbf{D}_{EU} \cdot \mathbf{W} \right\} \\
\mathbf{W} \cdot \left\{ \mathbf{W} \cdot \mathbf{C}_{EU} + \mathbf{C}_U : 2\mathbf{W} + \mathbf{D}_U : 2\mathbf{W} + \mathbf{D}_{EU} : 2\mathbf{W} \right\} \\
+ 2\sigma_y \frac{1}{\rho} \partial_{\text{plast}} \sigma_y \mathbf{W} \right\} \cdot (T - T_B) \\
\end{align*}
\]

where the superimposed asterisk indicates that particular transposition of a fifth-order tensor
\[
\mathbf{W}^\circ
\]
which fulfills
\[
\mathbf{T} \cdot \mathbf{W}^\circ \cdot T = T \cdot \mathbf{W} \cdot \mathbf{T}^\circ
\]
for every second-order tensor T and every third-order tensor \mathbf{T}.

This linear equation can be uniquely solved for the consistency parameter λ. The left-hand
side of this equation is positive due to the loading condition (5.84). If the elasticities have the
usual positive definiteness properties, and if hardening occurs with $\dot{\sigma}_{\text{pl}} \sigma_Y > 0$, then the
terms in {}-brackets are always positive, so that λ will in fact be positive during yielding, as it
should be. If we substitute λ into the flow rules (5.85) - (5.86), we obtain the consistent flow
rules, which is straightforward but not done here for brevity.

If we substitute (5.85) - (5.86) into the definition of the plastic work (5.79), we obtain

$$w_{\text{plast}}^* = \frac{\lambda}{\rho} \left\{ (T - T_B) \cdot \mathbf{E}_p \cdot U_p : \mathbf{D}_{EU} : U_p + \frac{1}{\rho} \mathbf{E}_p \cdot U_p : \mathbf{D}_U : U_p + \frac{1}{\rho} \mathbf{E}_p \cdot \mathbf{D}_{EU} : U_p \right\}.$$

By an appropriate choice of $\mathbf{W}^{(4)}, \mathbf{W}^{(5)}, \mathbf{W}^{(6)}$ (positive semi-definiteness) we can assure that
the plastic work is non-negative.

The heat generated by yielding $-Q_p$ after (5.62) is then according to (5.77), (5.78), (5.81)
determined by

$$-Q_p = -\frac{1}{\rho} \left(\mathbf{E}_p \cdot \mathbf{D}_{EU} : \mathbf{U}_p + \frac{1}{\rho} \mathbf{E}_p \cdot \mathbf{U}_p \right) - \mu w_{\text{plast}}^* + \left[\frac{T - T_B}{\rho} \cdot \mathbf{E}_p \cdot 0 \cdot \hat{\sigma}_{\text{pl}} \eta_p \right] \cdot \mathbf{U}_p^* + \left[\frac{1}{\rho} \left((T - T_B) - \rho \theta \hat{\sigma}_\eta \eta_p \right) \cdot \mathbf{U}_p^* + \mu w_{\text{plast}}^* \right].$$

$(1-\mu)$ can be interpreted as a TAYLOR-QUINNEY factor. The residual dissipation inequality
(5.59) becomes with (5.62), (5.80), and (5.90)

$$0 \leq -Q_p + \theta \eta_p^* = (1-\mu) w_{\text{plast}}^*.$$

This can always be satisfied by choosing $0 \leq \mu \leq 1$. We see that a non-trivial ansatz for the
plastic part of the entropy instead of (5.80)

$$\eta_p \equiv \gamma \ w_{\text{plast}}$$

with any non-negative real constant γ would also satisfy the dissipation inequality. So the
plastic part of the entropy is only weakly restricted by the second law and by no means unique.

We finally obtain for the free energy for our model with (5.71), (5.81) and (5.92)

$$\psi = \frac{1}{2 \rho} \mathbf{E}_e \cdot \mathbf{C}_e : \mathbf{E}_e + \frac{1}{2 \rho} \mathbf{U}_e \cdot \mathbf{C}_U : \mathbf{U}_e + \frac{1}{\rho} \mathbf{E}_e \cdot \mathbf{C}_{EU} : \mathbf{U}_e.$$
\[+ c \rho (\Delta \theta - \frac{\theta \ln \frac{\theta}{\theta_0}}{\theta_0}) + \Delta \theta \frac{l}{\rho} (R \cdot E_e + R \cdot \mathbf{U}_e) \]
\[+ \frac{l}{2 \rho} E_p \cdot \mathbf{D} \cdot E_p + \frac{l}{2 \rho} U_p \cdot \mathbf{D} \cdot U_p \]
\[+ \frac{l}{\rho} E_p \cdot \mathbf{D} \cdot U_p : U_p + (1 - \mu) w_{plast} \]

which completes the model equations for the general anisotropic example.

Isotropic Example

For isotropic materials we use the isotropic representations by CAUCHY and MINDLIN/ESHEL (1968) for the constitutive equations. For the free energy we obtain after (5.93)
\[\rho \psi = a_1 (E_e \cdot I)^2 + a_2 E_e \cdot E_e + a_3 I \cdot U_e \cdot U_e \cdot I + a_4 (U_e \cdot I) \cdot (U_e \cdot I) \]
\[+ a_5 (I \cdot U_e) \cdot (I \cdot U_e) + a_6 U_e \cdot U_e + a_7 U_e \cdot U_e^t + c \rho (\Delta \theta - \frac{\theta \ln \frac{\theta}{\theta_0}}{\theta_0}) \]
\[+ \Delta \theta a_8 I \cdot E_e + \rho (\mu - \theta) w_{plast} \]
\[+ b_1 (E_p \cdot I)^2 + b_2 E_p \cdot E_p + b_3 I \cdot U_p \cdot U_p \cdot I + b_4 (U_p \cdot I) \cdot (U_p \cdot I) \]
\[+ b_5 (I \cdot U_p) \cdot (I \cdot U_p) + b_6 U_p \cdot U_p + b_7/2 U_p \cdot U_p^t \cdot (U_p^{[12]} + U_p^{[13]}) \]

where the following particular transposition for a triadic \([U^{[12]}]_{ijk} : = U_{kij}\) is used. \(a_i\) and \(b_i\) are scalar material constants.

This gives the following stresses after (5.72) and (5.73)
\[T = 2a_1 (E_e \cdot I) I + 2a_2 E_e + \Delta \theta a_8 I \]
\[T^{[3]} = \text{sym}^{[23]} [2a_3 I \otimes U_e \cdot I + 2a_4 (U_e \cdot I) \otimes I + 2a_5 I \otimes I \cdot U_e + 2a_6 U_e + a_7 (U_p^{[12]} + U_p^{[13]})]. \]

The back stresses of (5.77) and (5.78) reduce in the isotropic case to
\[T_B = 2d_1 (E_p \cdot I) I + 2d_2 E_p \]
\[T^{[3]}_B = \text{sym}^{[23]} [2d_3 I \otimes U_p \cdot I + 2d_4 (U_p \cdot I) \otimes I + 2d_5 I \otimes I \cdot U_p + 2d_6 U_p + 2d_7 U_p^t] \]

with scalar material constants \(d_i\).

The FOURIER law for the heat flux (5.76) obtains the usual form
\[q = -\kappa g \]
with a non-negative coefficient \(\kappa\).
For the entropy after (5.74) and (5.92) we obtain

\begin{equation}
\eta = - \frac{1}{\rho} a \mathbf{I} \cdot \mathbf{E}_e + c \ln \frac{\theta}{\theta_0} + \gamma \mathbf{w}_{\text{plast}}.
\end{equation}

The v. Mises-type yield criterion (5.82) becomes in the isotropic case

\begin{equation}
\varphi = g_1 [(\mathbf{T} - \mathbf{T}_B) \cdot \mathbf{I}]^2 + g_2 (\mathbf{T} - \mathbf{T}_B) \cdot (\mathbf{T} - \mathbf{T}_B)
\end{equation}

\begin{align*}
&+ g_3 [\mathbf{I} \cdot (\mathbf{T} - \mathbf{T}_B) \cdot (\mathbf{T} - \mathbf{T}_B) \cdot \mathbf{I} + g_4 [(\mathbf{T} - \mathbf{T}_B) \cdot \mathbf{I}] \cdot [(\mathbf{T} - \mathbf{T}_B) \cdot \mathbf{I}]
\end{align*}

\begin{align*}
&+ g_5 [\mathbf{I} \cdot (\mathbf{T} - \mathbf{T}_B)] \cdot [\mathbf{I} \cdot (\mathbf{T} - \mathbf{T}_B)] + g_6 (\mathbf{T} - \mathbf{T}_B) \cdot (\mathbf{T} - \mathbf{T}_B)
\end{align*}

\begin{align*}
&+ g_7 (\mathbf{T} - \mathbf{T}_B) \cdot (\mathbf{T} - \mathbf{T}_B) \cdot \sigma^2(\mathbf{w}_{\text{plast}}, \theta, \mathbf{g})
\end{align*}

with scalar material constants \(g_i\), one of which can be generally normalized to one.

The associated flow rules (5.85) - (5.86) are accordingly

\begin{equation}
\mathbf{E}_p^* = \lambda \{ g_1 [(\mathbf{T} - \mathbf{T}_B) \cdot \mathbf{I}] \mathbf{I} + g_2 (\mathbf{T} - \mathbf{T}_B) \}
\end{equation}

\begin{equation}
\mathbf{U}_p^* = \lambda \{ g_3 \mathbf{I} \otimes (\mathbf{T} - \mathbf{T}_B) \cdot \mathbf{I} + g_4 [(\mathbf{T} - \mathbf{T}_B) \cdot \mathbf{I}] \mathbf{I} + g_5 \mathbf{I} \mathbf{I} \cdot (\mathbf{T} - \mathbf{T}_B)
\end{equation}

\begin{align*}
&+ g_6 \mathbf{U}_e + g_7 (\mathbf{T} - \mathbf{T}_B)^2 \mathbf{I}
\end{align*}

where the factor 2 has been drawn into the plastic parameter.

If the flow criterion is density-insensitive then \(g_1 = g_2 / 3\), and \((\mathbf{T} - \mathbf{T}_B)\) is deviatoric, the same as \(\mathbf{E}_p\).
Appendix: On Constrained Gradient Elastoplasticity

In the preceding parts we considered *unconstrained gradient elastoplasticity*. Since many authors in the field of gradient materials prefer a constrained format, we want to give some remarks on this class of models.

As in the unconstrained case, we assume an additive decomposition of the strain tensor into an elastic and a plastic part

\[E = E_e + E_p \]

and an analogous one of the gradient of the strain tensor

\[N := \text{grad} \ E = E \otimes \nabla = N_e + N_p \]

However, in contrast to the procedure before, we assume the constraint

\[N_p = \text{grad} \ E_p \]

According to this ansatz, we need only one flow rule

\[E_p^* = \lambda \ E(E_e, N_e, \theta, g, E_p, N_p, Z_p) \]

and a hardening rule

\[Z_p^* = \lambda \ Z(E_e, N_e, \theta, g, E_p, N_p, Z_p) \].

This gives after the chain rule for the plastic increment

\[N_p^* = \text{grad} \ E_p^* = \text{grad} \ [\lambda \ E(E_e, N_e, \theta, g, E_p, N_p, Z_p)] \]

\[= E(E_e, N_e, \theta, g, E_p, N_p, Z_p) \otimes \text{grad} \ \lambda + \lambda \ [\partial_{E_e} E \cdot \text{grad} \ E + \partial_{N_e} E \cdot \text{grad} \ N_e + \partial_{\theta} E \otimes g + \partial_g E \cdot \text{grad} g + \partial_{E_p} E \cdot \text{grad} E_p + \partial_{N_p} E \cdot \text{grad} N_p + \partial_{Z_p} E \cdot \text{grad} Z_p] \].

The consistency condition after (5.81) becomes in this case

\[0 = \varphi(E_e, N_e, \theta, g, E_p, N_p, Z_p)^* \]

\[= \partial_{E_e} \varphi \cdot E_e^* + \partial_{N_e} \varphi \cdot N_e^* + \partial_{\theta} \varphi \cdot \theta^* + \partial_g \varphi \cdot g^* + \partial_{E_p} \varphi \cdot E_p^* + \partial_{N_p} \varphi \cdot N_p^* + \partial_{Z_p} \varphi \cdot Z_p^* \]

\[= \partial_{E_e} \varphi \cdot E_e^* + \partial_{N_e} \varphi \cdot N_e^* + \partial_{\theta} \varphi \cdot \theta^* + \partial_g \varphi \cdot g^* + \partial_{E_p} \varphi \cdot \lambda \ E(E_e, N_e, \theta, g, E_p, N_p, Z_p) + \partial_{N_p} \varphi \cdot \{E(E_e, N_e, \theta, g, E_p, N_p, Z_p) \otimes \text{grad} \ \lambda \]
can locally be varied independently, leads by standard arguments to the conditions from (5A.8)

+ \partial E \psi \ psi
gradient thermoelasticity, namely the independence of the free energy of the temperature gradient

\[(5A.9)\quad \psi = \psi(E_e, N_e, \theta, E_p, N_p, Z_p)\]

instead of \((5.47)\), and the thermoelastic potentials

\[(5A.10)\quad T = \rho \partial_{E_e} \psi = T(E_e, N_e, \theta, E_p, N_p, Z_p)\]

\[(5A.11)\quad 3T = \rho \partial_{N_e} \psi = G(E_e, N_e, \theta, E_p, N_p, Z_p)\]

\[(5A.12)\quad \eta = -\partial_{\theta} \psi = \eta(E_e, N_e, \theta, E_p, N_p, Z_p)\]

as well as the heat conduction inequality

\[(5A.13)\quad -q \cdot g \geq 0\]

as necessary and sufficient conditions for the second law to hold during elastic events.

Because of continuity, restrictions \((5A.10)\) - \((5A.13)\) must also hold when reaching the yield limit. If yielding occurs, however, then the additional terms of the CLAUSIUS-DUHEM inequality \((5A.7)\) must fulfill the residual inequality

\[0 \geq (\partial_{E_p} \psi - \frac{T}{\rho}) \cdot E_p^* + (\partial_{N_p} \psi - \frac{l}{\rho} T^3) \cdot \text{grad} E_p^* - \partial_{Z_p} \psi \cdot Z_p^* .\]

\[= (\partial_{E_p} \psi - \frac{T}{\rho}) \cdot \lambda E(E_e, N_e, \theta, g, E_p, N_p, Z_p)\]

\[+ (\partial_{N_p} \psi - \frac{l}{\rho} T^3) \cdot \{E(E_e, N_e, \theta, g, E_p, N_p, Z_p) \otimes \text{grad} \lambda\}
\]

\[+ \lambda [\partial_{E_e} E \cdot \text{grad} E_e + \partial_{N_e} E \cdot \text{grad} N_e + \partial_{\theta} E \otimes g + \partial_{g} E \cdot \text{grad} g
\]

\[+ \partial_{E_p} E \cdot \text{grad} E_p + \partial_{N_p} E \cdot \text{grad} N_p + \partial_{Z_p} E \cdot \text{grad} Z_p]\}

\[- \lambda \partial_{Z_p} \psi \cdot Z(E_e, N_e, \theta, g, E_p, N_p, Z_p) .\]

using \((5A.4)\) and \((5A.5)\). This is also a PDE and can only be evaluated as a result of the boundary value problem.

We must conclude that the constraint gradient plasticity leads to complicated PDEs for both the consistency condition and for the CLAUSIUS-DUHEM inequality which can be hardly exploited in general, in contrast to the unconstrained case.
6. On Isotropic Stiffness Hexadics

The following chapter is based on

It aims at investigating the stiffness tensors for linear isotropic second-gradient elasticity. In doing so, we refer to the notations introduced in Chapter 3, specified for the case $N = 2$.

In particular, we use the following set of kinematical variables

\[
E := \text{sym grad } u \\
U := \text{grad grad } u
\]

with the following symmetry properties by definition

\[(6.1)\]
\[E_{ij} = E_{ji} \quad \text{and} \quad U_{ijk} = U_{ikj}.\]

The work-conjugate stress tensors \mathbf{T} and $\mathbf{T}^{(3)}$ are assumed to show the same symmetries. According to the notations of Chapter 3, the linear elastic law within this format is constituted by the following tensors: $\mathbf{C}^{(2,2)}, \mathbf{C}^{(2,3)}, \mathbf{C}^{(3,2)}, \mathbf{C}^{(3,3)}$ such that

\[(6.2)\]
\[\mathbf{T} = \mathbf{C}^{(2,2)} \cdot \cdot E + \mathbf{C}^{(2,3)} \cdot \cdot \mathbf{U} \]
\[\mathbf{T}^{(3)} = \mathbf{C}^{(3,2)} \cdot \cdot E + \mathbf{C}^{(3,3)} \cdot \cdot \mathbf{U}.\]

The stiffness tensors inherit the following subsymmetries from the above variables

\[(6.3)\]
\[C_{ijkl}^{(2,2)} = C_{jikl}^{(2,2)} = C_{ijlk}^{(2,2)} \]
\[C_{ijklm}^{(2,3)} = C_{ikjlm}^{(2,3)} = C_{ijkml}^{(2,3)} \]
\[C_{ijklm}^{(3,2)} = C_{ikjlm}^{(3,2)} = C_{ijkml}^{(3,2)} \]
\[C_{ijklmn}^{(3,3)} = C_{ikjlmn}^{(3,3)} = C_{ijklnm}^{(3,3)} .\]

The material is hyperelastic, if an elastic energy exists of the following form as a special case of (4.13)

\[(6.4)\]
\[w(E, U) = \frac{1}{2} E \cdot \cdot \mathbf{C}^{(2,2)} \cdot \cdot E + \frac{1}{2} U \cdot \cdot \mathbf{C}^{(3,3)} \cdot \cdot U + E \cdot \cdot \mathbf{C}^{(2,3)} \cdot \cdot U + \mathbf{E} \cdot \cdot \mathbf{C}^{(3,2)} \cdot \cdot U\]

so we can assume the additional symmetries

\[(6.5)\]
\[C_{ijkl}^{(2,2)} = C_{klij}^{(2,2)} \]
\[C_{ijklmn}^{(3,3)} = C_{lmnjik}^{(3,3)} .\]
while \(C_{2,3} \) is completely determined by \(C_{3,2} \) according to (4.16), and vice versa.

Moreover, if the material is centro-symmetric, \(C_{2,3} \) and \(C_{3,2} \) vanish because of (4.29).

If we restrict our concern in this chapter to the isotropic case, the tensors \(C_{2,2} \) and \(C_{3,3} \) must obey

\[
Q^* C_{2,2} = C_{2,2} \quad \text{and} \quad Q^* C_{3,3} = C_{3,3}
\]

for all orthogonal symmetry transformations \(Q \) after (4.27).

The representation of an isotropic tetradic like \(C_{2,2} \) is in principle known since two centuries and enjoys a clear physical interpretation. For isotropic hexadics like \(C_{3,3} \) we find them in MINDLIN/ESHEL (1968), see (5.93). However, a physical interpretation for the latter is still lacking. In what follows we want to further the understanding and knowledge of such isotropic hexadics.

An isotropic hexadic can be represented by

\[
C_{3,3} = \sum_{i=1}^{5} c_i B_i
\]

as a linear combination of five base hexadics with components

\[
\begin{align*}
B_{1,ijklmn} &= \delta_{jk} \delta_{ln} + \delta_{jk} \delta_{in} \delta_{ml} + \delta_{jl} \delta_{ki} \delta_{mn} + \delta_{jl} \delta_{ik} \delta_{mn} \\
B_{2,ijklmn} &= \delta_{ji} \delta_{km} \delta_{nl} + \delta_{jm} \delta_{ki} \delta_{nl} + \delta_{ji} \delta_{in} \delta_{ml} + \delta_{jm} \delta_{ik} \delta_{ml} \\
B_{3,ijklmn} &= \delta_{jn} \delta_{il} \delta_{km} + \delta_{jm} \delta_{in} \delta_{kl} + \delta_{jn} \delta_{ik} \delta_{ml} + \delta_{jm} \delta_{ik} \delta_{nl} \\
B_{4,ijklmn} &= \delta_{jk} \delta_{il} \delta_{mn} + \delta_{jl} \delta_{im} \delta_{nk} + \delta_{jm} \delta_{in} \delta_{lk} + \delta_{jn} \delta_{im} \delta_{kl} \\
B_{5,ijklmn} &= \delta_{jk} \delta_{il} \delta_{mn}
\end{align*}
\]

with respect to any orthonormal basis \(\{e_i \otimes e_j \otimes e_k \otimes e_l \otimes e_m \otimes e_n\} \).

This can be brought into a more direct notation similar to (0.31)

\[
\begin{align*}
B_1 &= 2 I \otimes I \otimes I + 2 e_k \otimes I \otimes I \otimes e_k \\
B_2 &= 4 e_m \otimes I \otimes e_m \otimes I \\
B_3 &= (e_i \otimes e_j + e_j \otimes e_i) \otimes I \otimes I \otimes (e_i \otimes e_j + e_j \otimes e_i) \\
B_4 &= 2 I \\
B_5 &= I \otimes e_k \otimes I \otimes e_k
\end{align*}
\]

with \(I \) being the sixth-order identity hexadic. Both forms (6.8) and (6.9) are not the same tensors, but will render identical results if applied to triadics with right subsymmetry. This means that on the forms of (6.9) further symmetries can be imposed, which (6.8) already display.

The metric of \(\{B_i\} \) is
We observe that

- $\frac{1}{2} \mathbf{B}_4$ maps every subsymmetric triadic onto itself
- $\frac{1}{3} \mathbf{B}_5$ maps every tensor of the form $\mathbf{v} \otimes \mathbf{I}$ onto itself
- $\frac{1}{8} \mathbf{B}_2$ maps every tensor of the form $\mathbf{I} \otimes \mathbf{v}$ onto $\text{sym}_{23} (\mathbf{I} \otimes \mathbf{v})$, i.e., its right subsymmetric part.

Before turning to the spectral decomposition, a more suitable basis is introduced by

$$
\mathbf{B}_1 := -\frac{1}{15}(\mathbf{B}_1 + \mathbf{B}_2 + \mathbf{B}_5) + \frac{1}{6}(\mathbf{B}_3 + \mathbf{B}_4)
$$

$$
\mathbf{B}_2 := \frac{1}{12}(2\mathbf{B}_1 - \mathbf{B}_2 - 2\mathbf{B}_3 + 4\mathbf{B}_4 - 4\mathbf{B}_5)
$$

$$
\mathbf{B}_3 := \frac{1}{60}(6\mathbf{B}_1 - 9\mathbf{B}_2 + 16\mathbf{B}_3)
$$

$$
\mathbf{B}_4 := \frac{1}{6\sqrt{5}}(3\mathbf{B}_1 - 4\mathbf{B}_3)
$$

$$
\mathbf{B}_5 := \frac{1}{20}(-2\mathbf{B}_1 + 3\mathbf{B}_2 + 8\mathbf{B}_3).
$$

The metric of this basis is diagonal with

$$
\mathbf{B}_i \cdots \mathbf{B}_j = \{7, 5, 6, 6, 6\}.
$$

The components of \mathbf{C} with respect to this base are

$$
\mathbf{c}_1 = 2(c_4 - c_3)
$$

$$
\mathbf{c}_2 = 4c_3 + 2c_4
$$

$$
\mathbf{c}_3 = \frac{1}{6}(12c_1 - 16c_2 + 2c_3 + 9c_5)
$$

$$
\mathbf{c}_4 = \frac{2\sqrt{5}}{3}(3c_1 + 2c_2 + 2c_3)
$$

$$
\mathbf{c}_5 = \frac{1}{2}(4c_1 + 8c_2 + 2c_3 + 4c_4 + 3c_5).
$$

The spectral representation of \mathbf{C} can be expressed with respect to this basis as

$$
\mathbf{C} = \sum_{i=1}^{5} \lambda_i \mathbf{p}_i
$$

with the eigenvalues

$$
\lambda_1 = \mathbf{c}_1 \quad \lambda_2 = \mathbf{c}_2 \quad \lambda_3 = \mathbf{c}_5 + c_r
$$

$$
\lambda_4 = \mathbf{c}_5 - c_r \quad \lambda_5 = \frac{1}{2}(\lambda_3 + \lambda_4)
$$

$$
c_r = \frac{1}{2}\left(\lambda_3 - \lambda_4\right)
$$

$$
\mathbf{c}_3 = c_r \cos \kappa
$$

$$
\mathbf{c}_4 = c_r \sin \kappa
$$
with \(c_r = \sqrt{c_3^2 + c_4^2} \) and the eigenprojectors

\[
\begin{align*}
P_1 &= B_1 \\
P_2 &= B_2 \\
P_3 &= \frac{1}{2} (B_5 + \frac{c_3}{c_r} B_3 + \frac{c_4}{c_r} B_4) \\
P_4 &= \frac{1}{2} (B_5 - \frac{c_3}{c_r} B_3 - \frac{c_4}{c_r} B_4)
\end{align*}
\]

(6.16)

We introduce a dimensionless parameter \(\kappa \) by

\[
\cos \kappa = \frac{c_3}{c_r} \Leftrightarrow \sin \kappa = \frac{c_4}{c_r}
\]

(6.17)

which allows us to use the four eigenvalues \(\lambda_1, \ldots, \lambda_4 \) and this parameter as the five independent material constants, where \(\kappa \) determines the last two eigenprojectors. One can express the dependence of the projectors and eigenvalues on this angle like

\[
\begin{align*}
P_3 (\kappa) &= P_4 (\kappa + \pi) \\
\lambda_3 (\kappa) &= \lambda_4 (\kappa + \pi)
\end{align*}
\]

(6.18)

so that it is reasonable to restrict \(\kappa \) to the interval \([0, \pi) \). The metric of this basis is diagonal

\[
P_i \cdot \cdot \cdot P_j = \begin{cases} 7, & i = 5, \ 5, & i = 3, \ 3, & i = 3 \end{cases},
\]

(6.19)

i.e., the multiplicities of the eigenvalues are 7, 5, 3, and 3. The projectors fulfil the usual conditions like the bi-orthogonality

\[
P_i \cdot \cdot \cdot P_j = \delta_{ij} P_i
\]

(6.20)

and the completeness since \(\sum_{i=1}^{4} P_i \) gives the sixth-order identity on triadics with right sub-symmetry. These equations resemble those of the spectral decomposition of a transversely isotropic stiffness tetradic, which also contains in general five independent components and four distinct eigenvalues\(^{58}\).

The previous formulae are convenient if one knows the parameters \(c_1, \ldots, c_5 \) and wants to determine the eigenvalues and the third and fourth eigenprojector. The inversion of these equations is

\[
\begin{align*}
c_1 &= \frac{[10 \lambda_1 - 4 \lambda_2 - 3 (\lambda_3 + \lambda_4) + 3 (\lambda_3 - \lambda_4) (\cos \kappa + \sqrt{3} \sin \kappa)]}{60} \\
c_2 &= \frac{-[10 \lambda_1 - 8 \lambda_2 + 3 (\lambda_3 + \lambda_4) - 3 (\lambda_3 - \lambda_4) \cos \kappa]}{120} \\
c_3 &= (\lambda_2 - \lambda_1)/6 \\
c_4 &= (2\lambda_1 + \lambda_2)/6
\end{align*}
\]

(6.21)

\(^{58}\) see Appendix A of KALISCH/ GLÜGE (2015).
\[c_5 = \frac{[-5\lambda_1 - \lambda_2 + 3(\lambda_3 + \lambda_4) + (\lambda_3 - \lambda_4)(2\cos\kappa + \sqrt{3}\sin\kappa)]}{15}. \]

Harmonic Decomposition

These results become clearer from the point of view of the harmonic decomposition of a third-order tensor with one subsymmetry\(^{59}\). The projectors, or more precisely, the parameter \(\kappa\) distinguishes a specific decomposition of the first-order harmonic contribution, which is discussed next\(^{60}\).

We will denote the set of all triadics with right subsymmetry by \(\text{Triad}^{(3)}\). In this space live \(\mathbf{T}\) and \(\mathbf{U}\). By virtue of the harmonic decomposition, a triadic \(\mathbf{H}\) is decomposed into a sum of mutually orthogonal tensors

\[\mathbf{H} = \sum_{i=1}^{N} \mathbf{H}_i \quad \text{with} \quad \mathbf{H}_i \cdot \mathbf{H}_j = 0 \quad \text{for} \quad i \neq j \tag{6.22} \]

which can correspond to the eigentensors of \(\mathbf{C}\). Here \(N\) is the number of different eigenvalues. Each \(\mathbf{H}_i\) is related to a different harmonic tensor \(\mathbf{H}^{(n)}_i\) by an isotropic linear mapping \(\mathbf{L}_i\) so that

\[\mathbf{H}_i = \mathbf{L}_i \cdots \mathbf{L}_1 \cdot \mathbf{H}^{(n)}_i \tag{6.23} \]

with an \(n\)-fold contraction. The order \(n\) of the harmonic tensors does not exceed that of the decomposed tensor. The harmonic tensor spaces are denoted by \(\mathcal{H}_i\) with dimension \(2i+1\) due to the fact that harmonic tensors are completely symmetric and traceless, \(i.e.,\) zero for all possible index contractions.

\(\text{Triad}^{(3)}\) is decomposed into the direct sum \((\oplus)\) of mutually orthogonal subspaces \(\mathcal{H}_i\). These subspaces are closed under the action of the RAYLEIGH product \((0.4)\) with an element of \(\text{Orth}^+\), \(i.e.,\)

\[\mathbf{H} \in \mathcal{H}_i \iff \mathbf{Q} \star \mathbf{H} \in \mathcal{H}_i. \]

A further decomposition without loss of this property is not possible. For this reason this decomposition is irreducible.

The harmonic decomposition can be thought of as the diagonalization of a matrix. The matrix originates from the action of the group \(\text{Orth}^+\) on the tensor space as rotations by means of the RAYLEIGH product. Subspaces for harmonic spaces of equal order form block matrices on the main diagonal, unless we define additional orthogonal decompositions.

The respective tensor \(\mathbf{H}\) can be represented by a linear combination of products of the form

\[\mathbf{H} = \sum_{j=1}^{3} \sum_{j=1}^{6} C_{ij} \mathbf{e}_i \otimes \mathbf{f}_j \tag{6.24} \]

\(^{59}\)see OLIVE/ AUFRAY (2014), ZHENG/ ZOU (2000).
\(^{60}\)see GOLUBITSKY/ STEWART/ SCHAEFFER (1988),
with two orthonormal bases \(\{ e_i \} \) and \(\{ f_j \} \) in the three-dimensional EUCLIDEan space and the space of symmetric second-order tensors, respectively. The harmonic decomposition of these spaces is given by \(\mathcal{H}_1 \) and \(\mathcal{H}_0 \oplus \mathcal{H}_2 \), respectively. The three-dimensional space cannot be decomposed into harmonic subspaces, hence it is represented by the three-dimensional space \(\mathcal{H}_1 \). The six-dimensional space of symmetric second order tensors is decomposed into the well-known spherical and deviatoric symmetric parts, the first of which is one-dimensional and corresponds to \(\mathcal{H}_0 \), while the second one is five-dimensional and corresponds to the symmetric and traceless second-order tensors of \(\mathcal{H}_2 \).

Similar to the decomposition (6.24), one can construct the space \(\text{Triad} \) as the dyadic product of the form

\[
\text{Triad} = \mathcal{H}_1 \otimes (\mathcal{H}_0 \oplus \mathcal{H}_2).
\]

With the CLEBSCH-GORDAN rule

\[
\mathcal{H}_m \otimes \mathcal{H}_n = \bigoplus_{k = |m-n|}^{m+n} \mathcal{H}_k
\]

we achieve

\[
\text{Triad} = \mathcal{H}_1 \otimes (\mathcal{H}_0 \oplus \mathcal{H}_2) \\
= (\mathcal{H}_1 \otimes \mathcal{H}_0) \oplus (\mathcal{H}_1 \otimes \mathcal{H}_2) \\
= \mathcal{H}_1 \oplus \mathcal{H}_1 \oplus \mathcal{H}_3 \oplus \mathcal{H}_2
\]

Thus we get two three-dimensional, one five-dimensional, and one seven-dimensional subspace, altogether forming the 18-dimensional space \(\text{Triad} \) of third-order tensors with right subsymmetry.

The harmonic decomposition is unique regarding the number and the dimensionality of the subspaces. However, when two subspaces of equal dimension appear, then there is an arbitrariness in the isomorphisms that connect \(\mathcal{H}_1 \) and \(\mathcal{H}_1^{(2)} \) after (6.23). In our representation, this arbitrariness corresponds to the angle \(\kappa \) that determines the direction of the two eigenprojectors \(P_3 \) and \(P_4 \) of the eigenvalues \(\lambda_3 \) and \(\lambda_4 \), each having the multiplicity of three. The relations (6.23) are here

\[
\begin{align*}
H_1 &= H_3^1 \\
H_2 &= \varepsilon \cdot H_2^2 \\
H_3 &= H_1^1 \cdot [\cos (\kappa/2) P_{4/1} + \sqrt{3} \sin (\kappa/2) P_{4/2}] \\
H_4 &= H_1^1 \cdot [-\sin (\kappa/2) P_{4/1} + \sqrt{3} \cos (\kappa/2) P_{4/2}]
\end{align*}
\]

where \(H_3^1, H_2^2, H_1^1, \) and \(H_1^1 \) denote the completely traceless and symmetric tensors of dimension 7, 5, 3, and 3, and \(H_i \) the eigentensors of \(\mathbf{C}^{(2)} \). Further, \(P_{4/1,2} \) are the isotropic projectors from the spectral decomposition of isotropic stiffness tetrads with the compression modulus \(K \) and shear modulus \(G \).
The 7-dimensional eigenspace \mathcal{H}_1

A displacement field u associated with the third-order harmonic tensor U has the following properties:

\begin{align*}
 u_{i,jj} &= 0 \quad \Leftrightarrow \quad \Delta u = \text{div grad} \, u = 0 \\
 u_{i,ik} &= 0 \quad \Leftrightarrow \quad \text{grad div} \, u = 0 \\
 u_{i,jk} &= u_{j,ik} \quad \Leftrightarrow \quad \text{grad curl} \, u = 0 .
\end{align*}

Here Δ denotes the LAPLACE operator. Thus, u is a harmonic function, and the volumetric strain must be homogeneous. The HELMHOLTZ representation theorem tells us that there is a scalar field ϕ and a vector field a that is divergence free (COULOMB’s gauge) such that

\begin{equation}
 u = \nabla \phi + \nabla \times a \quad \text{and} \quad \text{div} \, a = 0 .
\end{equation}

(6.30)

Since for sufficiently smooth fields the LAPLACEan and the gradient operation commute, (6.30.3) is equivalent to

\begin{equation}
 \text{grad curl} \, u = - (u \times \nabla) \otimes \nabla = 0 .
\end{equation}

(6.33)

So the rotational part of u is also homogeneous. The HELMHOLTZ representation and COULOMB’s condition imply

\begin{equation}
 (\Delta a) \otimes \nabla = \Delta \text{grad} \, a = 0 .
\end{equation}

(6.34)

Since the LAPLACEan and the gradient operation commute, $\Delta \phi = u_{i,i}$ and Δa are homogeneous (6.32), (6.34), and $\nabla \phi$ and $a \otimes \nabla$ are harmonic functions due to (6.32) and (6.34).

The 5-dimensional eigenspace \mathcal{H}_2

For convenience we drop the indices of the components of H^2_1 in what follows. With respect to an ONB we get

\begin{itemize}
 \item are free from volumetric strain gradients (6.30.2),
 \item their components have zero mean curvature (6.30.1),
 \item the gradient of the axial vector $u \times \nabla$ vanishes (6.34), i.e., the rotational part of the displacement field is homogeneous.
\end{itemize}
(6.35) \[u_{i,jk} = \frac{1}{2} (\epsilon_{ijl} H_{lk} + \epsilon_{ikl} H_{lj}) \]

where \(u_i \) is the component of the displacement field that produces only strain gradients in the 5-dimensional eigenspace that is isomorphic to \(\mathcal{H}^2 \).

We cannot directly transfer the traceless and symmetric properties of \(\mathcal{H}^2 \) to the displacement gradient, since a summation index is involved in \(\mathcal{H}^2 \) but not in \(u_{i,jk} \). Taking the two independent traces gives

(6.36)
\[
\begin{align*}
 u_{i,ij} &= \frac{1}{2} (\epsilon_{ijl} H_{lj} + \epsilon_{ijl} H_{lj}) = \epsilon_{ijl} H_{lj} = 0 \iff \text{axi skw } \mathcal{H}^2 = 0 \\
 u_{j,jk} &= \frac{1}{2} (\epsilon_{jkl} H_{lk} + \epsilon_{jkl} H_{lk}) = \frac{1}{2} \epsilon_{jkl} H_{lj} = 0 \iff \text{axi skw } \mathcal{H}^2 = 0.
\end{align*}
\]

so that both conditions bear the same information.

The skew part of \(\mathcal{H}^2 \) (and hence the axial vector of it) is zero by definition. Thus we find that the eigenstrain gradients of the 5-dimensional eigenspace belong to harmonic displacement fields without volumetric strain gradient, as in the case before.

Now we consider

\[
2 (\varepsilon_{nij} u_{i,j})_{,k} = 2 \varepsilon_{nij} u_{i,jk} = \varepsilon_{nij} (u_{i,jk} - u_{j,ik})
\]

\[
= \varepsilon_{nij} \frac{1}{2} (2 \varepsilon_{ijm} H_{nm} + \epsilon_{ilm} H_{jm} - \epsilon_{jim} H_{mn})
\]

(6.37)
\[
= \frac{1}{2} (2 \varepsilon_{ijn} \varepsilon_{ijm} H_{nm} + \epsilon_{ijn} \epsilon_{ilm} H_{jm} - \epsilon_{jim} \epsilon_{jnm} H_{mi})
\]

\[
= 2 \delta_{nm} H_{mk} + \frac{1}{2} [\delta_{jk} \delta_{nm} - \delta_{jm} \delta_{nk} H_{mj} - (\delta_{nk} \delta_{im} - \delta_{nm} \delta_{ik}) H_{mi}]
\]

\[
= 2 H_{nk} + \frac{1}{2} (H_{nk} - \delta_{nk} H_{mn} - \delta_{nk} H_{nm} + H_{nk})
\]

\[
= 2 H_{nk}.
\]

In symbolic notation we thus have

(6.38) \[\mathcal{H}^2 \propto (u \times \nabla) \otimes \nabla = (-\Delta \mathbf{a}) \otimes \nabla = -\Delta (\mathbf{a} \otimes \nabla). \]

\(\mathcal{H}^2 \) is symmetric and deviatoric. The latter property is in accordance with COULOMB’s condition on \(\mathbf{a} \). The symmetry of \(\mathcal{H}^2 \) implies another constraint on \(\mathbf{a} \)

(6.39) \[\Delta (\mathbf{a} \otimes \nabla) = \Delta (\nabla \otimes \mathbf{a}) \]

\[\iff \]

\[0 = \Delta (\mathbf{a} \otimes \nabla - \nabla \otimes \mathbf{a}) \]

(6.40)
\[= \Delta \mathbf{a} \cdot (\mathbf{a} \times \nabla) \]

(6.41) \[\iff \]

\[\mathbf{o} = \Delta (\mathbf{a} \times \nabla) = (\Delta \mathbf{a}) \times \nabla. \]

The divergence of (6.39) provides by means of the COULOMB condition

\[
\mathbf{o} = [\Delta (\mathbf{a} \otimes \nabla - \nabla \otimes \mathbf{a})] \cdot \nabla
\]

(6.42)
\[= \Delta [(\mathbf{a} \otimes \nabla) \cdot \nabla - (\nabla \otimes \mathbf{a}) \cdot \nabla] \]

\[= \Delta (\Delta \mathbf{a} - \nabla (\mathbf{a} \cdot \nabla)) = \Delta \Delta \mathbf{a}. \]

Therefore, \(\mathbf{a} \) must be a biharmonic function. In conclusion, the displacement fields that generate eigenstrain gradients in \(\mathcal{H}^2 \)

- are free from volumetric strain gradients,
• have zero mean curvature,
• and the divergence of the gradient of the axial vector \(\mathbf{u} \times \nabla \) vanishes.

The last restriction is weaker than in the case of \(\mathcal{H}^1 \) since we have less constraints to exploit in the present case (one zero trace and one symmetry vs. two zero traces and one symmetry).

The 3-dimensional eigenspaces

Unfortunately, \(\mathbf{H}^1_3 \) and \(\mathbf{H}^1_4 \) have no symmetry or zero trace that could be exploited. The third and the fourth eigenmode depend on the angle \(\kappa \) which depends on the coefficients \(c_{1,2,3,5} \) through (6.17). Thus we can determine canonical angles by taking one of the \(c_{1,2,3,5} \) as infinite, or consider more general directional limits with fixed rations between \(c_{1,2,3,5} \). When doing so, two special cases emerge, namely when \(c_2 \) or \(c_5 \) are infinite. In both cases, the third eigenvalue \(\lambda_3 \) becomes infinite, and its eigenprojector \(P_3 \) becomes \(\frac{1}{8} \mathbf{B}_2 \) or \(\frac{1}{3} \mathbf{B}_5 \), respectively. The angles \(\kappa \) that belong to these materials can be inferred from (6.17) and one finds the following limits

\[
\begin{align*}
c_2 \to \infty : \cos \kappa & \to -\frac{2}{3}, \quad P_3 = \frac{1}{8} \mathbf{B}_2, \quad \lambda_3 \to \infty \\
c_5 \to \infty : \cos \kappa & \to 1, \quad P_3 = \frac{1}{3} \mathbf{B}_5, \quad \lambda_3 \to \infty
\end{align*}
\]

However, we can also adjust \(\kappa \) and the eigenvalues \(\lambda_{1,2,3,4} \) independently.

The case \(\cos \kappa = -\frac{2}{3} \)

The eigentensors of the third and fourth eigenvalue are related to the harmonic tensors \(\mathbf{H}^1_3 \) and \(\mathbf{H}^1_4 \) through

\[
\begin{align*}
\mathbf{H}_3 &= \mathbf{H}_3^3 \cdot \mathbf{I}^S = \text{sym}_{23} \mathbf{I} \otimes \mathbf{H}_3^3 \\
\mathbf{H}_4 &= \mathbf{H}_4^4 \cdot (\mathbf{I}^S - 6 P_{4,1}) / \sqrt{5}
\end{align*}
\]

This case is closest to the usual strain decomposition into dilatonic and deviatoric parts. The eigenmodes of the third eigenvalue are gradients of the volumetric strain. Unfortunately, the fourth eigenmode does not correspond to a gradient of a deviatoric strain.

By considering

\[
\cos \kappa = \frac{c_3}{c_r} = -\frac{2}{3} \quad \text{and} \quad \sin \kappa = \frac{c_4}{c_r} = \frac{\sqrt{5}}{3}
\]

– remember the restriction of \(\kappa \) to the interval \([0, \pi) \) – , by eliminating \(\lambda_3 \) and summarizing, one finds that this case corresponds to

\[
4c_1 + 2c_3 + c_5 = 0.
\]

The case \(\cos \kappa = 1 \)

The eigentensors of the third and fourth eigenvalue are related to the harmonic tensors \(\mathbf{H}^1_3 \)
and H^I_d by

$$H_3 = H^I_3 \cdot P_{d/1}$$
$$H_4 = H^I_4 \cdot P_{d/2}.$$ \hfill (6.46)

A calculation similar to the symbolic examination of the 7- and 5-dimensional eigenspaces shows that both eigenstrain gradients H_3 and H_4 result from displacement fields with a biharmonic field ϕ in their HELMHOLTZ representations. In terms of c_i, this case corresponds to

$$3c_1 + 2c_2 + 2c_3 = 0.$$ \hfill (6.47)

Relations to other forms of the strain gradient elasticity

We next summarize the conversion of the parameters between the two forms of strain gradient elasticity, namely those of MINDLIN/ESHEL (1968), NEFF/JEONG/RAMEZANI (2009), and LAZAR/MAUGIN/AIFANTIS (2006).

MINDLIN/ESHEL’s second form of strain gradient plasticity

MINDLIN and ESHEL’s two forms for the isotropic strain gradient energy comprise the following non-classical terms

$$\frac{1}{2} U :: \mathbf{C}_U :: U$$ with $U = \nabla \nabla u$

$$\frac{1}{2} M :: \mathbf{C}_M :: M$$ with $M := \nabla \otimes E$.

With respect to the basis $\{B_i\}$, the components of the first hexadic expressed by those of the second are related as

$$c_{U1} = \frac{1}{2} (c_{M1} + c_{M2})$$
$$c_{U2} = c_{M1}/2 + c_{M2}/4 + c_{M5}/4$$
$$c_{U3} = 3c_{M3}/4 + c_{M4}/4$$
$$c_{U4} = \frac{1}{2} (c_{M3} + c_{M4})$$
$$c_{U5} = c_{M2}.$$ \hfill (6.49)

Note that MINDLIN uses another basis as we do, so that his components are also different from ours.

The form of NEFF/JEONG/RAMEZANI (2009)

The following table gives the conversion of special cases of strain gradient elasticity to the components of MINDLIN’s isotropic stiffness hexadic (6.48).
Table. Special cases of strain gradient elasticity translated into the parameter set c_i.

dev means deviatoric part, skew means skew part, sym means symmetric part.

The form of LAZAR/MAUGIN/AIFANTIS (2006)

These authors recommend the use of

\[
C_{ijklmn}^{(2,2)} = l^2 C_{jklnm}^{(1,2)} \delta_{il}
\]

with an internal length parameter l with respect to the form (6.48.1). In the case of anisotropic elasticity, the second order tensor that extends the stiffness tetradic is invariant under the action of the material symmetry transformations. In the case of isotropy and cubic elasticity, this tensor is spherical. This leads to the following relationships with our coefficients

\[
\begin{align*}
c_1 &= 0 \\
c_2 &= l^2 \left(K/4 - G/6\right) \\
c_3 &= l^2 G/4 \\
c_4 &= l^2 G/2 \\
c_5 &= 0
\end{align*}
\]

with compression modulus K and shear modulus G.

This gives for MINDLIN’s second form (6.48.2) only two non-zero parameters

\[
c_{1, 2, 3} = 0
\]
\begin{align}
\sigma_4 &= l^2 G \\
\sigma_5 &= l^2 \lambda
\end{align}

with the Lamé constant λ.
7. Internal Constraints

The following chapter is based on

7.1 Mechanical Internal Constraints

The theory of internal constraints as it is described in, e.g., TRUESDELL/ NOLL sect. 30 (1965), is a useful tool for the description of incompressible materials, inextensible composites, and many more material classes. It provides us with a basis upon which both theoretical and practical investigations can be developed. Particularly, it provides a change of the structure of the basic balance equations, which can be helpful for the construction of solutions of the field problem. This way, the only non-homogeneous universal solutions for simple materials are those for constrained materials.\(^{61}\)

For gradient materials, one wants to introduce internal constraints other than the classical ones to again benefit from such extensions. The question arises whether such an extension is possible, or demands substantial alterations of the entire format. It turns out, and will be shown in the sequel, that such an extension is in fact straightforward once a theory of gradient materials has been constructed, at least within the mechanical context.

Classical Internal Constraints

The classical theory of internal constraints is based on two assumptions.

\begin{assumption}
There are restrictions upon the possible deformations of the material, such that a scalar valued function of the motion and its gradient equals zero for all possible deformations
\[\gamma(\chi, \nabla \chi) = 0 \]
\end{assumption}

\begin{assumption}
The stress is determined by the deformation process only to within an additive part \(T_R \) that does no work in any possible motion satisfying the constraint.
\end{assumption}

If one applies the Principle of Invariance under Rigid Body Modifications (Axiom 2.1) to the material function \(\gamma \), one can show that a function \(\gamma_{\text{red}}(\mathbf{C}) \) with the right CAUCHY-GREEN tensor \(\mathbf{C} \) (0.52) is invariant and, hence, a reduced form.

\(^{61}\) see ERICKSEN (1955)
Such a constraint would be considered as isotropic if it is invariant under arbitrary rotations and reflexions

\[
\gamma_{\text{red}}(C) = \gamma_{\text{red}}(Q \cdot C \cdot Q^T)
\]

for all orthogonal tensors \(Q\). In this sense, incompressibility would be an isotropic constraint, while inextensibility in one direction is not.

By exploiting the second assumption, we start with an additive split of the CAUCHY stresses into an extra part and a reactive part

\[
T = T_E + T_R
\]

so that the specific stress power of the latter vanishes for every compatible process

\[
1/\rho T_R \cdot \dot{D} = 0.
\]

We can bring the constraint equation into a rate form

\[
\gamma_{\text{red}}(C)^* = \text{grad} \gamma_{\text{red}}(C) \cdot C^* = 0
\]

and express the stress power in terms of a reactive 2nd PIOLA-KIRCHHOFF stress

\[
1/\rho_0 S_R \cdot C^* = 0 \quad \text{with} \quad S_R := F^{-1} \ast J T_R.
\]

If we multiply this equation by a LAGRANGEan multiplier and add it to the constraint equation, we find that the 2nd PIOLA-KIRCHHOFF reaction stress \(S_R\) must have the representation

\[
S_R = \alpha \partial_C \gamma_{\text{red}}(C)
\]

and the CAUCHY reaction stress

\[
T_R = \alpha F \cdot \partial_C \gamma(C) \cdot F^T
\]

with \(\alpha \in \mathbb{R}\).

As a normalization of the decomposition, we can pose the orthogonality condition

\[
T_R \cdot T_E = 0
\]

or

\[
S_R \cdot S_E = 0.
\]

This is, however, not necessary and often not even practical.

If there is more than one internal constraint (say \(N \leq 6\)), we also have more than one reaction stress, which can be superimposed to the total stress as

\[
T = T_E + \sum_{i=1}^{N} \alpha_i F \cdot \partial_C \gamma_i(C) \cdot F^T
\]

with \(\alpha_i \in \mathbb{R}\).

TRUESDELL/ NOLL (1965) put these assumptions in an axiomatic way, without giving any substantiation for them other than the plausibility of their consequences in particular applications.
Non-Classical Internal Constraints

The question arises, if one could generalize such a construction to gradient materials. It turns out that such a generalization is straightforward. We again make the two assumptions.

Assumption 7.3. There are restrictions upon the possible deformations of the material, such that a scalar valued function of the motion, deformation gradient, and the second gradient equals zero for all possible deformations

\[
\gamma(\chi, \text{Grad \ } \chi, \text{Grad Grad \ } \chi) = 0
\]

(7.11)

If this is understood as a constitutive equations, it should fulfil the EUCLIDEan invariance Axiom 2.1. This leads to the following reduced form of the non-classical internal constraint

\[
\gamma_{\text{red}} : \text{Conf} \rightarrow \mathcal{R}
\]

such that

(7.12)

\[
\gamma_{\text{red}}(\mathbf{C}, \mathbf{K}) = 0
\]

holds for all motions. The rate form of the constraint equation is

(7.13)

\[
\partial_{\mathbf{C}} \gamma_{\text{red}} \cdot \mathbf{C}^* + \partial_{\mathbf{K}} \gamma_{\text{red}} \cdot \mathbf{K}^* = 0
\]

Assumption 7.4. Principle of determinism for simple materials subject to internal constraints

The stresses and the hyperstresses are determined by the deformation process only to within additive parts \(\mathbf{T}_R \) and \(\mathbf{3}_R \) that do no work in any possible motion satisfying the constraint.

The decomposition of the stress tensors is therefore

\[
\mathbf{T} = \mathbf{T}_E + \mathbf{T}_R
\]

and

\[
\mathbf{T} = \mathbf{T}_E + \mathbf{T}_R
\]

or of the material stresses

\[
\mathbf{S} = \mathbf{S}_E + \mathbf{S}_R
\]

and

\[
\mathbf{S} = \mathbf{S}_E + \mathbf{S}_R
\]

It has been shown in (2.24) that the specific stress power for a second-gradient material can be brought into the following EULERean and LAGRANGEan forms. After the second assumption we have

(7.14)

\[
0 = \frac{1}{\rho} (\mathbf{T}_R \cdot \text{grad} \mathbf{v} \rangle_{\mathbf{R}} \cdot \text{grad} \text{grad} \mathbf{v})
\]

\[
= \frac{1}{\rho_0} (\frac{1}{2} \mathbf{S}_R \cdot \mathbf{C}^* + \langle \mathbf{S}_R \cdot \mathbf{K}^* \rangle)
\]

By subtracting an \(\alpha \)-fold of the constraint equation in the rate form, we obtain

(7.15)

\[
0 = \left(\frac{1}{2 \rho_0} \mathbf{S}_R - \alpha \partial_{\mathbf{C}} \gamma_{\text{red}} \right) \cdot \mathbf{C}^* + \left(\frac{1}{\rho_0} \mathbf{S}_R - \alpha \partial_{\mathbf{K}} \gamma_{\text{red}} \right) \cdot \mathbf{K}^*
\]

so that the following equations must hold
\begin{equation}
S_R = \alpha \partial_C \gamma_{\text{red}}(C, K)
\end{equation}

with a joint LAGRANGEan parameter α which couples the two reactive stresses.

The constraint equation allows for the following choice: Certain parts of the deformation gradient cannot vary in space.

For F having nine independent components, and the space having three linear independent directions, $9 \times 3 = 27$ such constraints on $\text{Grad} \, F$ are possible. This, however, reduces to 18 independent constraints because of SCHWARZ’ commutation law since $\text{Grad} \, F$ has the right subsymmetry

\begin{equation}
F_{ij}, k = \chi_{ij}, kj = \chi_{ij}, ki = F_{ik}, j.
\end{equation}

This subsymmetry also applies to the configuration tensor K.

In SEPPECHER/ ALIBERT/ DELL’ISOLA (2011) one finds examples of materials with microstructures with such properties.

By imposing 18 independent constraints of this kind, the deformation gradient can only be constant in space. Bodies with this property have been investigated in the past under the label homogeneous strains, see SLAWIANOWSKI (1974, 1975), or pseudo-rigidity, see COHEN (1981), COHEN/ MUNCASTER (1984), COHEN/ MAC SITHIGH (1989), ANTMANN/ MARLOW (1991), CASEY (2004, 2006, 2007). However, these approaches are completely different from the present one, since there the homogeneity of strains is imposed on the body as a global constraint, while in the present approach we still assume local constraints as an extension of classical constraints to gradient materials.

If some material allows for an internal constraint of the classical form

$$\gamma_1(C) \cdot C^* = 0$$

which holds also in the neighbourhood of the point, one can take the derivatives of this equation in three linear independent directions. This gives raise to another three internal constraints of the form

$$\gamma_2, 3, 4(K) \cdot K^* = 0$$

which are of second order. This effect will be demonstrated in the next section for the incompressibility constraint.
7.2 Thermomechanical Constraints

Not only in mechanics, but also more general in thermo-mechanics, the introduction of internal constraints can be advantageous. In the literature, several suggestions have been made to generalize the mechanical concepts of constraints to thermodynamics, see GREEN/ NAGHDI/ TRAPP (1970), TRAPP (1971), ANDREUSSI/ PODIO-GUIDUGLI (1973), GURTIN/ PODIO-GUIDUGLI (1973), CASEY / KRISHNASWAMY (1998), BERTRAM (2005), CASEY (2011).

In what follows, we extend the concept made in TRAPP (1971) and BERTRAM (2005), where one also finds examples for thermomechanical constraints like temperature-dependent incompressibility or inextensibility.

Definition 7.1. A thermo-mechanical internal constraint consists of material functions

\[J : \Conf \times \mathbb{R}^+ \to \Triad (\mathbf{C}, \mathbf{K}, \theta) \mapsto J(\mathbf{C}, \mathbf{K}, \theta) \]

\[j : \Sym \times \mathbb{R}^+ \to \mathbb{V}^3 (\mathbf{C}, \mathbf{K}, \theta) \mapsto j(\mathbf{C}, \mathbf{K}, \theta) \]

\[j : \Sym \times \mathbb{R}^+ \to \mathbb{R} (\mathbf{C}, \mathbf{K}, \theta) \mapsto j(\mathbf{C}, \mathbf{K}, \theta) \]

such that for all admissible thermo-kinematical processes the constraint equation

\[J(\mathbf{C}, \mathbf{K}, \theta) \cdot \mathbf{K}^\ast + J(\mathbf{C}, \mathbf{K}, \theta) \cdot \mathbf{C}^\ast + j(\mathbf{C}, \mathbf{K}, \theta) \cdot \mathbf{g}_0 + j(\mathbf{C}, \mathbf{K}, \theta) \cdot \theta^\ast = 0 \]

holds at each instant.

Since we made use of material variables, this constraint is already in a reduced form. The first two terms, to which the equation is reduced in the isothermal case, corresponds to the mechanical constraint in its rate form (7.13).

Once again, we have to modify the Principle of Determinism.

Assumption 7.5. Principle of determinism for materials with thermo-mechanical internal constraints

The current values of the hyperstress, stress, heat flux, internal energy, and entropy are determined by the thermo-kinematical process only up to additive parts that are not dissipative during all admissible processes that satisfy the constraint equation (7.19).

Thus, we have the decompositions of the dependent variables into reactive parts and extra parts:

- hyperstress: \[\langle \mathbf{S} \rangle = \langle \mathbf{S} \rangle_E + \langle \mathbf{S} \rangle_R \]
- PIOLA-KIRCHHOFF stress: \[\mathbf{S} = \mathbf{S}_E + \mathbf{S}_R \]
- heat flux: \[\mathbf{q}_0 = \mathbf{q}_0E + \mathbf{q}_0R \]
- internal energy: \[\varepsilon = \varepsilon_E + \varepsilon_R \]
entropy \[\eta = \eta_E + \eta_R \]

and, consequently, also for the free energy

\[\psi = \varepsilon_E - \theta \eta_E - \theta \eta_R = : \psi_E + \psi_R \]

where only the extra-terms depend on the thermo-kinematical process. The reaction parts do not dissipate in the sense of the CLAUSIUS-DUHEM inequality

\[
\frac{1}{\rho_0} \left(\frac{1}{2} S_R \cdot C^* + \frac{1}{3} S_R : K^* \right) - \frac{1}{\theta \rho_0} q_{0R} \cdot g_0 - \psi_R - \eta_R \theta^* = 0
\]

for all admissible thermo-kinematical processes. If we subtract from this equation an \(\alpha \)-fold of the constraint equation we get

\[
\left(\frac{1}{2\rho_0} S_R - \alpha J \right) \cdot C^* + \left(\frac{1}{\rho_0} S_R - \alpha J \right) : K^* - \left(\frac{1}{\theta \rho_0} q_{0R} + \alpha j \right) \cdot g_0 - \psi_R^* - (\eta_R + \alpha j) \theta^* = 0
\]

for any real \(\alpha \). Because of the arbitrariness of \(C^* \), \(K^* \), \(g_0 \), and \(\theta^* \), this is solved for all constrained materials only by

\[
S_R = \alpha \rho_0 J(C, K, \theta)
\]

\[
S_R = 2 \alpha \rho_0 J(C, K, \theta)
\]

\[
q_{0R} = - \alpha \rho_0 \theta j(C, K, \theta)
\]

\[
\psi_R^* = 0
\]

or spatially

\[
T_R = \alpha \rho F \circ J(C, K, \theta)
\]

\[
T_R = 2\alpha \rho \ast J(C, K, \theta)
\]

\[
q_R = - \alpha \rho \theta F \ast j(C, K, \theta)
\]

With this form, for no \(\alpha \in \mathbb{R} \) can a contradiction to the CLAUSIUS-DUHEM inequality occur if the extra terms already fulfil it alone.

Since the free energy is only determined up to a constant, we can principally assume \(\psi_R = 0 \).

As a normalization of the decomposition, one can pose the orthogonality condition

\[
S_R : S_E + \frac{1}{4} S_R \cdot S_E + q_{0R} \cdot q_{0E} / \theta^2 + \rho_0^2 \eta_R \cdot \eta_E = 0
\]

This is, however, not compulsory and perhaps not even practical.

If more than one constraint is active, then the reactive parts are simply additive superpositions of those resulting from each constraint alone.
Introduction of Internal Constraints in a Natural Way

In BERTRAM (1980, 1982) another approach to establish a theory of internal constraints has been suggested, claiming to be in a natural way. Here only solids are considered for which the stresses are (at least partly) caused by elastic deformations. The idea there is, roughly speaking, to consider constraint material behaviour as a limit of hyperelastic behaviour with increasing stiffness for certain deformation modes.

If one starts with hyperelastic behaviour of a simple material, one can consider a tangential stiffness tensor with 6 (not necessary different) eigenvalues called principal stiffnesses in the case of classical (non-gradient) materials. If one produces a series of such materials by incrementing one of these eigenvalues to infinity and keeping all others finite, one produces in the limit a material behaviour that is constrained in such a way that the deformation mode belonging to this eigenvalue tends to zero if only finite stresses are applied. It has been shown there that for an isotropic or anisotropic hyperelastic material, this construction exactly leads to the above two Assumptions 5.1 and 5.2.

The method to produce internal constraints in a natural way can also be applied to gradient hyperelastic materials. We can (locally) linearize the elastic laws (2.34) and (2.35) by taking their incremental forms

\[
(7.26) \quad dS = \langle \mathbf{E} \rangle \cdot d\mathbf{C} + \langle \mathbf{E} \rangle : d\mathbf{K}
\]

\[
\langle \mathbf{\mathcal{T}} \rangle = d\mathbf{C} \cdot \langle \mathbf{E} \rangle + \langle \mathbf{E} \rangle : d\mathbf{K}
\]

with a

- fourth-order symmetric stiffness tensor (tetradic) \(\langle \mathbf{E} \rangle = 2\rho_0 \partial_{\mathbf{C} \mathbf{C}} w(\mathbf{C}, \mathbf{K}) \)
- sixth-order symmetric stiffness tensor (hexadic) \(\langle \mathbf{E} \rangle = \rho_0 \partial_{\mathbf{K} \mathbf{K}} w(\mathbf{C}, \mathbf{K}) \)
- fifth-order stiffness tensor \(\langle \mathbf{E} \rangle = 2\rho_0 \partial_{\mathbf{C} \mathbf{K}} w(\mathbf{C}, \mathbf{K}) \).

Interesting for us is the stiffness hexadic \(\langle \mathbf{E} \rangle \) since it does not exist for classical materials. We can bring the hexadic into a spectral form

\[
(7.27) \quad \langle \mathbf{E} \rangle = \sum_{i=1}^{18} \lambda_i \langle \mathbf{P} \rangle_i
\]

with 18 (not necessarily distinct) eigenvalues \(\lambda_i \) and the same number of eigenspace projectors of sixth-order \(\langle \mathbf{P} \rangle_i \). These are related to the third-order normalized and orthogonal eigentensors \(\mathbf{E}_i \) of the stiffness hexadic by the sum

\[
(7.28) \quad \langle \mathbf{P} \rangle_i = \sum_{j=1}^{M_i} \mathbf{E}_j \otimes \mathbf{E}_j
\]
over the multiplicity M_i of the particular eigenvalue. The construction of internal constraints in a natural way consists of taking for all of these eigenvalues finite values except for one, say λ_1.

Let us first consider an eigenvalue of multiplicity one. In the limit, one would not be able to deform the material in the corresponding mode by applying finite stresses. Thus, we obtain the constraint equation (in this case independent of C)

$$\gamma_{\text{red}}(K) : = E_1 \cdot K = 0$$

and expect the reaction hyperstresses after (7.16.2) as

$$S_R = \alpha \partial_K \gamma_{\text{red}}(K) = \alpha E_i$$

with some scalar field α.

Such a constraint would be considered as isotropic if it is invariant under arbitrary rotations

$$\gamma_{\text{red}}(K) = \gamma_{\text{red}}(Q \ast K)$$

for all orthogonal tensors Q. Clearly, this is the case if and only if

$$E_i = Q \ast E_i$$

i.e., for isotropic tensors. But this would be a rather drastic restriction, which should not be made in general.

We can also superimpose the M constraints of a multiple eigenvalue in one equation

$$\gamma_{\text{red}}(K) : = K : \bar{P}_i \cdot K = 0.$$

An alternative approach to create internal constraints was suggested by CASEY (1995) and BAESU/ CASEY (2000) in a mechanical, and CASEY/ KRISHNASWAMY (1998) and CASEY (2011) in a thermomechanical setting where the constrained material is identified as an equivalence class of unconstrained ones.
8. Nth-Order Gradient Fluids

In his dissertation thesis published in 1867, MAURICE LEVY investigated velocity profiles in different channel flows measured by DARCY and BAZIN. He saw that such *mouvements giratoires et oscillatoires* and *fort tumultueux* (turbulent flows) cannot be described neither by NAVIER’s law what we now call after NAVIER-STOKES nor by non-linear fluids like polynomials of the rate-of-deformation tensor. ST.-VENANT (1869a) reported on this thesis and suggested to include higher velocity gradients in the stress law.

Such extensions will be called *gradient fluids* in the sequel of this section\(^{62}\). It is necessary to emphasize that we do *not* mean gradient fluids in the sense of KORTEWEG (1901) and his followers, where the gradient of the density (and not of the velocity) appears in the elastic part of the stress law.\(^{63}\)

Obviously independent of ST.-VENANT’s suggestion, the Berlin Mechanics School started in the 1980s with models of viscous fluids which extend the classical NAVIER-STOKES law by including additional kinematical variables. Particularly, the inclusion of higher velocity gradients and the extension to corresponding hyper-stresses was meant as a format to describe fully developed turbulence in incompressible fluids. The starting paper was by TROSTEL (1985), presenting a format of \(N\)-th order. It was applied to turbulence, spanning the whole range from a second-order material model, solution of the balance laws, material identification, and the discussion of appropriate boundary conditions. Shortly after this pioneering work, SILBER (1986) extended this format to include also third-order velocity gradients.

In what follows we will try to reproduce such models and bring them into a format which reflects the present knowledge on gradient materials.

The stress power for an \(N\)-th-order gradient material is assumed to be of the form

\[
\rho \pi_i = T^{(2)} \cdot \text{sym grad } v + T^{(3)} : \text{grad }^2 v + T^{(4)} : : \text{grad }^3 v + \ldots + T^{(N+1)} \cdot \cdot \cdot \text{grad }^N v
\]

We denote the higher velocity gradients by

\[
\mathbf{v}^{(i)} = \text{grad}^i v
\]

and, exceptionally,

\[
\mathbf{v}^{(2)} = \mathbf{D} = \text{sym grad } v
\]

which we collect in the hypervector

\[
\mathbf{V} = \{ \mathbf{v}^{(2)}, \mathbf{v}^{(3)}, \ldots, \mathbf{v}^{(N+1)} \}
\]

\(^{62}\) The editor appreciates helpful discussions and comments for this chapter by ARNOLD KRAWIETZ and GERHARD SILBER.

\(^{63}\) See, e.g., PODIO-GUIDUGLI/ VIANELLO (2013).
forming the kinematical set of our gradient fluid. The conjugate dynamical set consists of the
stress and hyperstress tensors which we also collect in a hypervector
\[\mathbf{T} = \{ \mathbf{T}^{(2)}, \mathbf{T}^{(3)}, \ldots, \mathbf{T}^{(N+1)} \} . \]
With this we obtain more compactly for the stress power with the direct notation already intro-
duced in Chapt. 4.

\[\langle \mathbf{T}, \mathbf{V} \rangle = \mathbf{T}^{(2)} \cdot \mathbf{D} + \mathbf{T}^{(3)} : \mathbf{V} + \mathbf{T}^{(4)} : : \mathbf{V} + \ldots + \mathbf{T}^{(N+1)} : \ldots : \mathbf{V} . \]

The number of independent variables of \(\mathbf{V} \) is

- for \(N = 1 \): \(3 \times [(1+2)] - 3 = 6 \)
- for \(N = 2 \): \(3 \times [(1+2) + (1+2+3)] - 3 = 6 + 18 = 24 \)
- for \(N = 3 \): \(3 \times [(1+2) + (1+2+3) + (1+2+3+4)] - 3 = 24 + 30 = 54 \)
- for \(N \geq 1 \): \(3/2 \times \sum_{j=1}^{N} [(1+j)^2 + (1+j)] - 3 \).

We again assume that the hyperstresses have the same subsymmetries as the conjugate kinematical
variables, namely the higher velocity gradients.

We have already seen in Chapt. 1 that \(\mathbf{D} \), \(\text{grad}^2 \mathbf{v} \), \(\text{grad}^3 \mathbf{v} \), etc., as well as all spatial stress
tensors \(\mathbf{T}^{(2)}, \mathbf{T}^{(3)}, \mathbf{T}^{(4)} \), etc., are objective tensor fields, so that the stress power is also objective.

Alternatively one could also use the form

\[\langle \mathbf{T}, \mathbf{V} \rangle = \mathbf{T}^{(2)} \cdot \mathbf{D} + \mathbf{T}^{(3)} : \mathbf{V} + \mathbf{T}^{(4)} : : \mathbf{V} + \ldots + \mathbf{T}^{(N+1)} : \ldots : \mathbf{V} \]

with slightly different stress tensors, as we have shown for an analogous case in Chapt. 4. But this format is mathematically equivalent to ours since the following identities hold

\[
\mathbf{V}^{(3)} = \text{grad grad} \mathbf{v} = \mathbf{v} \otimes \nabla \otimes \nabla = \frac{1}{2} (\mathbf{v} \otimes \nabla \otimes \nabla + \nabla \otimes \mathbf{v} \otimes \nabla + \nabla \otimes \nabla \otimes \mathbf{v} - \nabla \otimes \nabla \otimes \mathbf{v} - \nabla \otimes \mathbf{v} \otimes \nabla) = \text{grad} \mathbf{D} + \text{grad} \mathbf{D}^{[23]} - \text{grad} \mathbf{D}^{[13]} \]

or inversely

\[
\text{grad} \mathbf{D} = \text{grad} \frac{1}{2} (\text{grad} \mathbf{v} + \text{grad}^T \mathbf{v}) = \frac{1}{2} \left(\mathbf{V} + \mathbf{V}^{[12]} \right) .
\]
Viscous Fluids

In the theory of gradient fluids, the kinematical variables for the constitutive equations that determine the stresses are assumed to be

\[\mathbf{V} : = \{ \mathbf{V} \equiv \mathbf{D}, \mathbf{V}, \ldots, \mathbf{V}^{(N+1)} \} . \]

Assumption 8.1. For a viscous fluid of order \(N \) there exist tensor functions of the kinematical variables

\[
\begin{align*}
{^{(2)}}\mathbf{T} &= f_1(\mathbf{V}^{(2)}, \mathbf{V}^{(3)}, \ldots, \mathbf{V}^{(N+1)}) \\
{^{(3)}}\mathbf{T} &= f_2(\mathbf{V}^{(2)}, \mathbf{V}^{(3)}, \ldots, \mathbf{V}^{(N+1)}) \\
& \vdots \\
{^{(N+1)}}\mathbf{T} &= f_N(\mathbf{V}^{(2)}, \mathbf{V}^{(3)}, \ldots, \mathbf{V}^{(N+1)})
\end{align*}
\]

or in compact notation

\[\mathbf{T} = f(\mathbf{V}) . \]

Application of the *Principle of invariance under superimposed rigid body modifications* requires that

\[
\begin{align*}
\mathbf{Q} \ast f_1(\mathbf{V}^{(2)}, \mathbf{V}^{(3)}, \ldots, \mathbf{V}^{(N+1)}) &= f_1(\mathbf{Q} \ast \mathbf{V}^{(2)}, \mathbf{Q} \ast \mathbf{V}^{(3)}, \ldots, \mathbf{Q} \ast \mathbf{V}^{(N+1)}) \\
\mathbf{Q} \ast f_2(\mathbf{V}^{(2)}, \mathbf{V}^{(3)}, \ldots, \mathbf{V}^{(N+1)}) &= f_2(\mathbf{Q} \ast \mathbf{V}^{(2)}, \mathbf{Q} \ast \mathbf{V}^{(3)}, \ldots, \mathbf{Q} \ast \mathbf{V}^{(N+1)}) \\
& \vdots \\
\mathbf{Q} \ast f_N(\mathbf{V}^{(2)}, \mathbf{V}^{(3)}, \ldots, \mathbf{V}^{(N+1)}) &= f_N(\mathbf{Q} \ast \mathbf{V}^{(2)}, \mathbf{Q} \ast \mathbf{V}^{(3)}, \ldots, \mathbf{Q} \ast \mathbf{V}^{(N+1)})
\end{align*}
\]

or in compact notation

\[\mathbf{Q} \ast f(\mathbf{V}) = f(\mathbf{Q} \ast \mathbf{V}) \]

holds for all values of \(\mathbf{V}^{(2)}, \mathbf{V}^{(3)}, \ldots, \mathbf{V}^{(N+1)} \) and all proper orthogonal tensors \(\mathbf{Q} \). Functions with this property are called *hemitropic functions*. This is a strong restriction upon our constitutive equations, as will be shown below.

In contrast, isotropic functions are those for which (8.6) holds for all orthogonal tensors \(\mathbf{Q} \), both proper and improper. The isotropic functions are included in the hemitropic ones. Our principle from above, however, gives no rise to include also improper tensors into this invariance requirement since the mirror image of a motion is not a motion.

Material Symmetry

A symmetry transformation is a change of the reference placement under which the constitutive equations are invariant. In our case, neither the independent (kinematical) variables nor the

\[^{64} \text{see BERTRAM/ SVENDSEN (2004) and BERTRAM (2012).} \]
dependent ones (spatial stresses) depend on the reference placement. Consequently, the symmetry group is maximal since all unimodular tensors are symmetry transformations, i.e., \(\mathcal{G} = \text{Unim} \). So our constitutive equations describe in fact (isotropic) fluids. This fact evidently has nothing to do with condition (8.6).

Quadratic Dissipation Potential

In the case of incompressible viscous fluids the stress power is completely dissipated. Often one assumes the existence of a **dissipation potential** as a scalar valued function of the kinematical variables

\[
\delta(\mathbf{V}, \mathbf{V}, \ldots, \mathbf{V})
\]

so that

\[
(8.7) \quad T = \partial\delta / \partial \mathbf{V} \quad \text{for } i = 2, \ldots, N+1
\]

holds.

If we particularize our concern to linear fluids, the dissipation potential must be a square form of \(\mathbf{V} \) represented by a hypermatrix \(D \)

\[
\delta = \frac{1}{2} D[\mathbf{V}, \mathbf{V}]
\]

\[
\delta = \frac{1}{2} (2) D_{22} \ldots (2) V + (2) D_{23} \ldots (3) V + \ldots (2) D_{2 N+1} \ldots (N+1) V
\]

\[
\frac{1}{2} (3) D_{33} \ldots (3) + (3) D_{34} \ldots (4) V + \ldots (3) D_{3 N+1} \ldots (N+1) V
\]

\[
(8.8) \quad \ldots
\]

\[
\frac{1}{2} (N+1) \ldots D_{N+1 N+1} \ldots (N+1) V
\]

such that the stress laws become after (8.7)

\[
(2) T = f_1(\mathbf{V}, \mathbf{V}, \ldots, \mathbf{V}) = D_{22} \ldots (2) V + D_{23} \ldots (3) V + \ldots D_{2 N+1} \ldots (N+1) V
\]

\[
(3) T = f_2(\mathbf{V}, \mathbf{V}, \ldots, \mathbf{V}) = D_{23} \ldots (3) V + D_{34} \ldots (4) V + \ldots D_{3 N+1} \ldots (N+1) V
\]

\[
(8.9) \quad \ldots
\]

\[
(2(N+1)) T = f_{N}(\mathbf{V}, \mathbf{V}, \ldots, \mathbf{V}) = V \ldots D_{N+1 N+1} \ldots (N+1) V
\]

or in symbolic notation

\[
T = D[\mathbf{V}].
\]

The dissipation depends only on the symmetric part of \(D \) so that this hypermatrix can be chosen symmetric.

As a consequence of the CLAUUSIUS-DUHEM inequality, \(D \) must be positive semi-definite.
Because of invariance under rigid body modifications (8.6), all the viscosity tensors D_{ij} must be hemitropic tensors, which is a strong restriction to be considered in the sequel.

It is worth here to note the differences between isotropic and hemitropic tensors. Even-order tensors like Q^{4} and Q^{6} are of square homogeneity in the determinant of Q. So for them isotropy and hemitropy coincide.

Odd-order tensors like D_{23}^{5} and D_{34}^{7} etc., however, are homogeneous in the determinant of Q. So hemitropic tensors do exist in this case, while odd-order isotropic tensors do not.

8.1 Second-Order Incompressible Gradient Fluids

We will next restrict our analysis to second-order gradient fluids ($N = 2$).

We assume **incompressibility** by the constraint equation in an EULERian form which is more appropriate for fluids

$$\text{div} \, \mathbf{v} = \mathbf{I} \cdot \cdot \mathbf{D} = 0.$$

If this constraint holds not only in one point but also in its neighbourhood, then we can also state the second-order constraint

$$\text{(8.10)} \quad \text{grad} \, \text{div} \, \mathbf{v} \cdot \mathbf{r} = \mathbf{I} \otimes \mathbf{r} \quad \therefore \quad \text{grad} \, \text{grad} \, \mathbf{v} = 0$$

with an arbitrary vector field \mathbf{r}. Then the second-order reaction stress is a hydrostatic pressure

$$\text{(8.11)} \quad \mathcal{T}_{R}^{(2)} = -p \mathbf{I}$$

and the third-order reaction stress is

$$\text{(8.12)} \quad \mathcal{T}_{R}^{(3)} = \text{sym}^{[3]} (\mathbf{I} \otimes \mathbf{r}) \, .$$

After (0.34) the complete ansatz for the dissipation potential as a hemitropic square form is

$$\delta (\mathbf{D} \, , \, \text{grad} \, \text{grad} \, \mathbf{v})$$

$$= \alpha_{1} / 2 \, \text{tr}^{2} \mathbf{D} + \alpha_{2} / 2 \, \mathbf{D} \cdot \cdot \mathbf{D}$$

$$\quad + \alpha_{3} \, \mathbf{D} \cdot \cdot (\mathbf{v} \cdot \cdot \text{grad} \, \text{grad} \, \mathbf{v})$$

$$\quad + \alpha_{4} / 2 \, \text{grad} \, \text{grad} \, \mathbf{v} \cdot \cdot \text{grad} \, \text{grad} \, \mathbf{v}$$

$$\quad + \alpha_{5} / 4 \, \text{grad} \, \text{grad} \, \mathbf{v} \cdot \cdot (\text{grad} \, \text{grad} \, \mathbf{v}^{[12]} + \text{grad} \, \text{grad} \, \mathbf{v}^{[13]})$$

$$\quad + \alpha_{6} / 2 \, (\text{grad} \, \text{grad} \, \mathbf{v} \cdot \cdot \mathbf{I}) \cdot (\text{grad} \, \text{grad} \, \mathbf{v} \cdot \cdot \mathbf{I})$$

$$\quad + \alpha_{7} / 2 \, (\mathbf{I} \cdot \cdot \text{grad} \, \text{grad} \, \mathbf{v}) \cdot (\text{grad} \, \text{grad} \, \mathbf{v} \cdot \cdot \mathbf{I})$$

$$\quad + \alpha_{8} / 2 \, (\mathbf{I} \cdot \cdot \text{grad} \, \text{grad} \, \mathbf{v}) \cdot (\mathbf{I} \cdot \cdot \text{grad} \, \text{grad} \, \mathbf{v})$$

However, due to the incompressibility, the terms with α_{1}, α_{7}, and α_{8} vanish. So the remainders are after some renaming
\[\delta(D, \nabla \nabla v) = b_1/2 \cdot D + b_2 \cdot (\varepsilon \cdots \nabla \nabla v) + b_3/2 \nabla \nabla v \cdots \nabla \nabla v \]
\[+ b_4/4 \nabla \nabla v \cdots (\varepsilon \cdot \nabla \nabla v) \]
\[+ b_3/2 \cdot \nabla \nabla v \cdot \nabla \nabla v \]
\[+ b_5/2 \cdot (\nabla \nabla v \cdots \mathbf{I}) \cdots (\nabla \nabla v \cdots \mathbf{I}) \]
\]
\[(8.13) = b_1/2 \cdot D + b_2 \cdot (\varepsilon \cdots \nabla \nabla v) + b_3/2 \nabla \nabla v \cdots \nabla \nabla v + b_4/4 \nabla \nabla v \cdots (\varepsilon \cdot \nabla \nabla v) + b_5/2 \cdot (\nabla \nabla v \cdots \mathbf{I}) \cdots (\nabla \nabla v \cdots \mathbf{I}) \]
\]

As an immediate consequence of the dissipation postulate, the constants \(b_1, b_3, \) and \(b_5 \) must be non-negative. The restrictions upon the other constants are less obvious.

The resulting extra stresses are after (8.7)
\[T_E^{(2)} = b_1 \cdot D + b_2 \text{ sym} (\varepsilon \cdots \nabla \nabla v) \]
\[= b_1 \cdot D + b_2 \text{ sym} (\varepsilon \cdot \nabla \otimes \nabla \otimes \nabla) \]
\[(8.14) = b_1 \cdot D - b_2/2 (\nabla \text{ curl } v + \nabla^T \text{ curl } v) \]

and
\[T_E^{(2)} = \text{ sym}^{[23]} [b_2 \cdot \varepsilon \cdot D + b_3 \cdot \mathbf{I} \cdots \nabla \nabla v + b_4 \cdot \mathbf{I}^{[12]} \cdots \nabla \nabla v] + b_5 \cdot \varepsilon \cdot \mathbf{I} \]
\[+ b_4/2 (\nabla \nabla v^{[12]} + \nabla \nabla v^{[13]}) + b_5 \cdot \Delta v \otimes \mathbf{I}. \]
\[(8.15) \]

This is the general form of an incompressible linear viscous second-order fluid. The following tensor appears in the local balance of linear momentum (1.142)
\[(8.16) T_E^{(2)} + T_R^{(2)} - \text{ div } T_E^{(3)} - \text{ div } T_R^{(3)} = b_1 \cdot D - b_2 \text{ sym } (\nabla \text{ curl } v) - p \mathbf{I} + b_2/4 (\mathbf{I} \times \Delta v - \nabla \text{ curl } v) - (b_3 + b_5) \Delta \Delta v - \frac{1}{2} (\text{ div } r \mathbf{I} + \nabla^T r). \]

The local balance of linear momentum (1.142) is now
\[(8.17) \rho (\mathbf{a} - \mathbf{b}) = \text{ div } [T_E^{(2)} + T_R^{(2)} - \text{ div } T_E^{(3)} - \text{ div } T_R^{(3)}] = b_1/2 \Delta v - b_2 \cdot \text{ curl } \Delta v - (b_3 + b_5) \Delta \Delta v - \text{ grad } p - \text{ grad div } r. \]
Boundary Conditions

Boundary conditions play an important role in such theories since the classical DIRICHLET and NEUMANN conditions are not sufficient for gradient models as we have already seen in Chapt. 1.2. Clearly, boundary value problems can only be solved if sufficient boundary conditions are prescribed. The higher the order of the model the more boundary conditions are needed. More precisely, for each increment of the order, one additional vectorial boundary value on all boundary points is needed.

A fundamental problem of experimental fluid mechanics is the determination of the boundary conditions by measurements. The profile of the velocities becomes feral and undeterminable near the walls. There are indications that the classical assumption of bonding of the fluid with the walls does not hold in the turbulent case anymore. Instead, one has to account for slip phenomena, which are, however, almost unmeasurable. This point has been discussed in more detail by TROSTEL (1988).

From (1.145) we know that for second-order gradient materials the power of the tensions and couple stresses on the boundary (here without edges and corners) is

\[t_2 \cdot v + (^{(3)} T \cdot n) \cdot \text{grad}_n v \]

with (1.132)

\[t_2 := (^{(2)} T - \text{div}_n^{(2)} T - 2 \text{div}_t^{(3)} T) \cdot n + (^{(3)} T) \cdot \text{div}_t n \otimes n \cdot \text{grad}_t n. \]

For a third-gradient material they become even more complicated as shown in (1.180).

TROSTEL calls the boundary conditions \textit{isoenergetic} if (8.18) vanishes in all boundary points, in contrast to real boundary conditions otherwise. Two special cases of isoenergetic conditions are:

- the fully fixed boundary where both \(v \) and \(\text{grad}_n v \) vanish,
- and the fully free boundary where both \(t_2 \) and \(^{(3)} T \cdot n \otimes n \) vanish

in all boundary points. Of course, these are not the only choices for isoenergetic boundary conditions.

TROSTEL’s suggestion for real boundary conditions consist of a linear viscous ansatz between the surface friction tensions and couple stresses with the tangential relative velocity between the fluid and the wall \(v_{rel} \) and its normal derivative \(\partial_n v_{rel} \)

\[t_2 = \lambda_{11} v_{rel} + \lambda_{12} \partial_n v_{rel} \]

\[^{(3)} T \cdot n \otimes n = \lambda_{21} v_{rel} + \lambda_{22} \partial_n v_{rel} \]
with porosity coefficients λ_{ij} which must be chosen in a way that the dissipation of these tensions are positive-definite65.

Works of the Berlin School

The first work on gradient viscosity was probably that by TROSTEL (1985)66. It starts with a rather general framework for N-th-order generalisations of the NAVIER-STOKES law and later particularizes these representations for a second-order fluid similar to the previous section.

However, some differences between TROSTEL’s approach and the present one shall be mentioned.

- TROSTEL considers only the isotropic parts, but not the hemitropic one. He believes that the isotropy of the stress laws for such fluids was a material property. In our format, however, the hemitropy of these laws results from the Principle of invariance under superimposed rigid body modifications and has nothing to do with material symmetry properties. For us, all fluids are isotropic by definition.

- In our theory, the second-order stress tensor is symmetric due to the local balance of moment of momentum (1.93). In contrast, TROSTEL assumes symmetry for the entire tensor

65 see SILBER/ TROSTEL/ ALIZADEH/ BENDEROTH (1998)

66 see also TROSTEL (2010)
\[\left(\frac{2}{3}\right) T_E + \left(\frac{2}{3}\right) T_R - \text{div} T_E - \text{div} T_R. \]

- TROSTEL considers the internal constraint incompressibility without third-order reaction stresses. As a consequence, his stress law contains a power neutral additional term which does not appear in our stress law for \(\left(\frac{3}{3}\right) T_E \).

In the sequel these differences are present in almost all papers of this school.

A more systematic and much more detailed description of gradient fluids can be found in SILBER (1986). Here the extension of the NAVIER-STOKES theory is given up to third-order, which naturally includes the second-order case. SILBER starts from a dissipation potential as a positive-definite square form, which is automatically symmetric. This form is assumed to be isotropic (not hemitropic), so that the representations of isotropic tensors by, e.g., CALDONAZZO (1932) can be used. By such an isotropic dissipation potential SILBER derives the stress laws for the second, third, and fourth-order hyperstresses. By implementing them into the local balance of linear momentum (1.142) he obtains sixth-order partial differential equations in the velocities.

The intention of these works is the description of steady fully-developed turbulent flows. In REICHARDT (1951, 1956) experimental measurements of the velocity profile in a COUETTE flow and a channel flow for this case are presented. In both cases these profiles deviate from the results of a (linear or nonlinear) first-order (simple) viscous law. In particular, the first-order theory would give a linear profile for the COUETTE flow and a parabola for the channel flow, while REICHARDT’s measurements render other profiles.

If the balance equation for the linear momentum is specified for these two cases, the only non-trivial equation is a sixth-order linear ordinary differential equation in the transverse direction of the channel. This can be solved analytically.

For the determination of a unique solution one needs boundary conditions. The problem to determine these conditions by measurement in experiments have already been mentioned before. This general problem has been discussed in almost all of the works of the Berlin School.

Due to the poverty of reliable boundary conditions, SILBER has determined the material constants by an optimization algorithm to fit the simulated velocity profile to the measured ones within the flow field, neglecting the boundary zone at the walls. By this procedure, SILBER can reproduce REICHARDT’s profiles with an acceptable accuracy. He demonstrates that the third-order theory gives better results than the second-order theory, although both are proven to be much better than the classical NAVIER-STOKES solutions with their principal deficits as mentioned before.

In SILBER (1988) the second-order fluid is compared with a micro-polar fluid. Here also the hemitropic part (0.28) of the gradient fluid is included which leads to a coupling of the second and third-order terms in the stress law.

Of course, one might generally question whether the macroscopic behavior of a turbulent flow allows for the Principle of invariance under superimposed rigid body modifications, see, e.g., LUMLEY (1983), SPEZIALE (1998), DAFALIAS (2011).

67 see ALEXANDRU (1989)
Another application of gradient fluids is the flow of blood which is a mixture of plasma and cells. For such mixtures we also find severe deviations from the classical results of NAVIER-STOKES fluids. In SILBER (1993) the model of an incompressible isotropic second-order fluid is used to solve the boundary-value problem for a POISEUILLE flow in a pipe with kinematical boundary conditions, and for an annulus flow between two concentric rotating cylinders with mixed boundary conditions. The analytical solutions reproduce the measured flow profiles in a satisfying precision.

The boundary value problem of a flow in the annulus has been further investigated by SILBER/ALIZADEH (1998) with the same gradient fluid ansatz. The boundary conditions are here dissipative and allow for a slip between fluid and wall. Besides the steady flow also a harmonic oscillation between the two cylinders is considered.

![Velocity profile in a POISEUILLE flow from SILBER et al. (1998)](image1)

Velocity profile in a POISEUILLE flow from SILBER et al. (1998)

dots: measurement, curve: simulation

![Measured (dots) and calculated velocity profile of a fully developed turbulent COUETTE flow of water from SILBER et al. (1998)](image2)

Measured (dots) and calculated velocity profile of a fully developed turbulent COUETTE flow of water from SILBER et al. (1998)

68 see also ALIZADEH/ BENDEROTH/ KASSECKERT/ RZEPKA/ STANULL/VOGT/ MOOSDORF/ SILBER (2005)
69 see also SILBER/ TROSTEL/ ALIZADEH/ BENDEROTH (1998)

These early works have not been adequately published at the time and seem to be almost forgotten in the sequel, although they are highly interesting and innovative. With them, TROSTEL and his group opened a completely new insight into material modeling of fluidity. Naturally, many interesting questions came up and still need further investigation.
References

Bertram, A.; Svendsen, B.: On material objectivity and reduced constitutive equations, Archives of Mechanics 53, 6, 653-675 (2001)

Dell´Isola, F.; Seppecher, P.: Edge contact forces and quasi-balanced power. Meccanica, 32, 1, 33-52 (1997)

Dell’Isola, F.; Seppecher, P.; Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach "à la D’Alembert". ZAMP 63, 6, 1119-1141 (2012)

Korteweg, D. J.: *Sur la forme que présentent les équations du mouvement des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité*. Archives Néerlandaises Sci. exactes naturelles. Ser. II,6, 1-24 (1901)

Laplace, P. S.: *Traite de mécanique céleste*. Paris (1799)

Maugin, G. A.: Continuum mechanics through the ages - from the renaissance to the twentieth century. Springer Verlag (2016)

Murdoch, A. I.: Symmetry considerations for materials of second grade. J. Elasticity 9,1, 43-50 (1979)

Papenfuss, C.; Forest, S.: Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom. Journal of Non-Equilibrium Thermodynamics 31,4, 319-353 (2006)

Piola, G.: Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione. Memorie di matematica e fisica della Società italiana delle scienze, 24, 1-186 (1848)

St.-Venant, A. J. C. B. de: *Note sur les valeurs que prennent les pressions dans un solide élastique isotrope lorsque l’ont tient compte des dérivées d’ordre supérieur des déplacements très-petits que leurs points ont éprouvés*. C. R. Acad. Sci. Paris 68, 569-571 (1869b)

Voyiadjis, G. Z.; Faghihi, D.: Gradient plasticity for thermo-mechanical processes in metals with length and time scales. Philosophical Magazine 93,9, 1013-1053 (2013)

